
AD-AlES 369 LERNING ONE SUIPROCEDURE PER LESSON(U) XEROX POLO ALTO Q10 ,67 RESEARCH CENTER CA INTELLIGENT SYSTEMS LAB K A YANLEHN
13 AUG 05 ISL-10 NSSOL4-92-C-9S67

UNCLSSIFIED F##G 5/10 N.

smomhhhhmhhhlm

% 5'.

1.0.

.. o -

1 32

2*22

365

...... _

,,.....

-5. . .- o..

- - ~ *... * * * *.o+ .

k '+ " ." 14.0

_!2 1-4m
m

Learning One Subprocedure Per Lesson

Kurt VanLehn

AV

Unclass if ied

REPORT DOCUMENTATION PAGE
la REPORT SECJRJi' CASSF CA' ONi lo RESR.C~iVE VAR ..

Unclassified

2a SECURrTY CLASSiF-CATION AL2' -.ORITY 3 DiS% 6,TON-: : AvA.B iKy OF REO04

2b DEC ASS-FCAT,O)NiDO&N3RADING SCHE%,~E Approved for public release; distribution
unlimited

4 PERFOR~v1NG ORGA~ii2A-ON PEPORT NLM8ER S SVN0N A A NFO~~~'$

ISL-10

6a NAME OF PERFORMIG ORCA\,.ZATON 6a 0:; CE S eV50- 7a NAVi OF .VONX_' '.G COGANZ,% ON A

Xerx PloAlt Rseachcener (i applicable) Personnel and Training Research Program

I____________office of Naval Research (Code 442 P'2
6c ADDRESS Cty. State, and ZIP Code) 7z) AD-- ' S City. Stare and Z;PC .,e)

3333 Coyote Hill Road Arlington, VA 22217

Palo Alto, CA 94304

Ba NAV~E OF FUND-NGi SPONSORX'G 3z) OFF CE S.%160 9 PRCz'YET .\S7R ,,ET :ENT7FCAT 7.

ORGANIZATiON (if applicable)N0048C0 6

84c ADDRESS (City. Strare, and ?IP Code) 10 5O.AC: 0- ; ND Nc NN4

DRIA. PRCIECT < ~~ 1: CK jc JNT
ELEMEV-N.O I N1IQ

61153N RR042-06 R'42-t m-A 1 N~~/

11 TITLE (Includle Security Classification)

Learning One Subprocedure per lesson

12 PERSONAL A...iC-,.
VanLehn, Kurt Alan

13a TYc~E OP REORT 7r3 O' 5/851,J' AE0-RO~ '~ ot~ a) SPAEC~ NTehnca ~ OV1//8 T 61585 August 13, 1985

16 S-PPLEVE14TARY NOTAT;ON

17 COS;.TI CODES 8 Su8jECT TERMS (Conrnue on rev~erse it necessary and identity by bicick numbet)

F!ELD GR s- coup Learning, skill acquisition, machine learning, induction,
graimmatical inference, felicity conditions, explanation-

based learning

19 ABS7RAC, (Contirue on reverse if necessary and identify by block number)

Sierra is a proqram that learns procedures incrementally 'rom examples.
It learns by completing explanations. W4henever the current procedure is
inadequate to explain (parse) the current example (a strinG of actions),
Sierra formulates a new subprocedure whose instantiation cor'mletes the
explanation. This technique is one solution to the problem of acquiring
the domain theory required by learning-by explanation systems. The key to
its success lies in supplying a small amount of extra information with the
examples. Instead of giving the learner an set of examples, under which
conditions correct learning is provably impos ible, it is niven a sequence .-

of "lessons," where a lesson is a set of examples, possibly a singleton set,

that is guaranteed to introduce only one subprocedure. This permits unbaised
learninq, i.e., learning without a priori, heuristic preferences concerninq
the outcome.%

* *~' . .. A A8LT 0: A9S7RACT z AB" ~ SEC'..R'- C Asi CAT 0N

L . .MD KI SAVE AS Z; C :)-,c 'SE ' inclassified

*O NS NE'V D-L :.b TE. -- OE (Inluicc AreCd) 2U E

Mi.ke Shafto (202) 696-4322 77 4 42 PT

DD FORM 1473, 84VA 83 ARec t 0'' -.y be sAed I EC, 'i.TYCu-ASSFC'I.O\ (

Unclassified

% .*

Learning One Subprocedure Per Lesson

Kurt VanLehn

ISL-10 August1985 [P85-00101]

©Copyright Xerox Corporation 1985. All rights reserved.

Acestofl For%

PITIS 01-R A A& 7T .P.

TI ' TI

/ :'~:-

01).

LyI

XEROX Xerox Corporation
Palo Alto Research Centers

333Coyote Hill Road
Palo Alto, California 94304

Approved for public release.
Distribution unlimited.

. .

Learning One Subprocedure Per Lesson

Kurt VanLehn

Abstract

Sierra is a program that learns procedures incrementally from examples,
where an example is a sequence of actions. Sierra learns by completing
explanations. Whenever the current procedure is inadequate for explaining
(parsing) the current example. Sierra formulates a new subprocedure whose
instantiation completes the explanation (parse tree). The key to Sierra's
success lies in supplying a small amount of extra information with the
examples. Instead of giving it a set of examples. under which conditions
correct jarning is provably impossible. it is given a sequence of *lessons."
where a lesson is a set of examples that is guaranteed to introduce only one
subprocedure. This permits unbiased learning, i.e.. learning without a priori,
heuristic preferences concerning the outcome.

-

.. .. .- .. *~*** *,**'..-.-...-.
* .o .

Table of Contents
I introduction 2

1.1. The particular learning task solved by Sierra 2

12. Why lesson sequences simplify procedure induction 8
1.3. How Sierra works ,

2. The representation of procedures 10

3. Disjunction an inherent problem for induction 15

4 Subprocedures
20

5. Skeleton induction
22

5.1. Prior solutions to the skeleton induction problem 28

6 Pattern induction 2

7 Function induction
32

7. 1 Prior solutions to the invisible objects problem 33

7 2, The show-work felicity condition 36

7.3. Parallels between the invisible objects problem and the dislunction 36

problem
8 Task generality

39

9. Concluding remarks
42

9.1. Some speculations on manner constraints and felicity conditions 42

9.2. Summary
43

9.3. Discussion
44

% • .. o".

-i

.-..-.-..

.~ ~ ' C .tzt v.- -ru -. ~ .,- -, -. . . ", -.- , , -.j'.

b.

Learning One Subprocedure Per Lesson

Kurt VanLehn.

1. Introduction

Much research in machine learning has concentrated on induction. i~e. learning from

examples. Understanding induction is certainly one of the great intellectual challenges

of our times Induction stands at the center of both the psychology of learning and

the philosophy of science.

More recently. induction has been heralded as a potential solution to the knowledge

acquisition problem of expert systems. However, Al has not had much success at

applying induction to practical problems. The difficulty is this: In practical settings,

only a finite set of examples can be presented to the learner, but the knowledge

representation language usually has enough expressive power that there are always

infinitely many representable generalizations that are consistent with the examples that

the learner has seen. (The formal results that justify this assertion will be reviewed

later.) That is, the examples just do not contain enough information to correctly"-

identify the target generalization. Consequently, the learner must guess. Al research

on induction has consisted largely of studying the efficacy and domain independence

of various heuristics for guessing. In this respect, the induction problem is quite

different than other kinds of Al problems, e g.. recognition or synthesis, where correct

answers are computable in principle, but non-Al techniques would take astronomically -.

long to compute them.

The inherent uncertainty of induction suggests studying forms of quasi-inductive

learning, where a teacher gives some extra information to the learner in addition to

the examples Winston argues for "the importance of good training sequences

prlpared by good teachers I think it is reasonable to believe that neither machines

nor children can be expected to learn much without them [47. og. 6J. As

Winston [48. 49 501 has pointed oui. there is a spectrum defined by how much extra

information is Provided On the one end of the spectrum is induction, where all the

iearner receives is examples On the other end is learning by being told. where the

learner is given a complete ciescription ot the target generalization in some language

.., *.-......

2

The kind of learning Studied here falls closer to the induction end of the spectrum

end than the learning-by-being-told end, because very little extra information is

supplied It could be called learning from lesson seQuences because the extra

information given to the learner is embedded in the way trat re examples are

partitioned into iessons and the way the lessons are sequenced in the last section of

this article a variant of learning from lesson sequences will be discussed wherein

lessons are omitted and the example sequence alone carries all the extra information

One of the most important areas for applying induction is in tie learning of

procedures Procedure iearning is the central problem in programming by

examples (1 7 8. 40 411. in psychological modelling of skill

acquisition [2 3. 33. 44 45]. and in automating protocol analyses (6i Machine

learning of procedures has been suggested as one way to solve the knowledge

acquisition problem for expert systems [31). and as a technique for modelling students

in intelligent tutoring system (27. 251 Undoubtably, there are many other applications

for procedure learning systems that have not yet been studied

An obvious testbed for the new approach of learning from lesson sequences is a

system to learn procedures. This article presents Sierra. a system that learns

procedures from lesson sequences.

1 1 The particular learning task solved by Sierra

Sierra was built for a specific application, a psychological study of the acquisition of

mathematical skills. arithmetic in particular (44. 45] Although it would make the

readers lob easier if Sierras techniques were displayed in a toy problem domain, this

article presents an unsimplified, accurate picture First. the kinds of examples qiven to

Sierra will be described followed by a description of lesson sequences.

Two general kinds of procedure induction problems have been addressed in the

literature The harder one is learning a procedure from input-output pairs [11 The one

Studied here is learning from action sequences it is assumed ,mat me agent that .

executes procedures is like a human or a robot in that its rocedures rnaniouiate both

.11 an external world that all agents have access to arl 2 an rterral staie ,ich ...

n -?a r Iv, vor, -k 7 31 t-,s form t earnma is :jile ; fearr)-n,-, _ ,-i

- - - , -X All -, - 3

3

is private The internal state might include a stack, for in., ance An action sequence

consists of a sequence of state changes to the external world (or equivalently a

sequence of world states) The learner cannot see the internal state of the teacher

during an action sequence Action sequences are "examples" of the target

procedure s execution The induction task is to infer a procedure from such examples

There are two kinds of examples. positive and negative. A positive example is an .,

action sequence that an induced procedures should generate when it is run on the - -.

problem that appears as the initial state in the action sequence. A negative example

is an action sequence that an induced procedure should not generate.

Sierra s input is an ordered sequence of lessons. where a lesson is an unordered

set of examples. Lessons contain only postive examples. Each lesson is marked with

a single bit The bit is 1 if the lesson is a "normal" lesson. and 0 if it is an

optimization" lesson2 In a moment, the semantics of lessons and their marks will be

described The point to note here is that the extra information given to Sierra over

and beyond the set of examples consists only of (1) the partition of the examples into

lessons. (2) the ordering of the lessons. and (3) the binary mark on lessons. Although

this is very little extra information, it vastly simplifies Sierra's induction task. The next

section discusses why.

Sierra learns procedures incrementally Each lesson builds on the procedure learned

in a previous lesson. This can be best illustrated with a familiar procedure. such as

the procedure for ordinary multicolumn subtraction. Figure 1-1 shows a lesson

sequence for subtraction. There are six lessons. Although a typical Sierra lesson has

about five examples. the figure shows only the first example from each lesson Each

example is shown as a sequence of states. Figure 1-2 shows a corresponding

sequence of procedures. where the procedures are sketched as Augmented Transistion

Nets (ATNs). The procedures correspond to the lessons as follows P0 is induced

from lesson L0: P1 from P0 and Li; P2 from P1 and L2 etc The last procedure

2 .rq % ' u

- ' *-~ ~ ' arcie ' "' "n. ' " ' 'i° " ' . " "e use "- -" " .' .: " 'e ""... "...... " .e"i e' a"-" . . .l,'°- -.- . . "

87:(

3

P5 is a complete correct subtraction procedure ,

1.2 Why lesson sequences simplify procedure induction

An earlier discussion put learning from lesson sequences on the same scale as

learning by being told. This may seem strange. Information encoded in the lesson

sequence does not seem like a linguistic expression. However, it functions in exactly

the same way Linguistic expressions have meaning for the learner only under

interpretation The conventions governing the interpretation are known by both the

teacher and the learner, The teacher generates explanations in such a way that the

learner will. ideally. interpret them the way the teacher wants them to be interpreted.

The same kind of convention-driven interpretation underlies the use of lesson

sequences. The formatting information (i.e., the partition, the order, the marks) is

generated by the teacher who understands the interpretation that that learner will place

on that information. Two interpretive conventions are explored here:

1. A normal lesson introduces at most one subprocedure. Roughly put, a
subprocedure is like one COND clause in Lisp: a test, which if true causes
an implicit PROGN of function calls to be executed, A precise definition of.-
"subprocedure" will be given after the knowledge representation language
for procedures is described.

2. A normal lesson introduces material that will allow the learner to solve
problems that it could not solve before. An optimization lesson shows the
learner more efficient ways to solve the same class of problems that it
could solve before the lesson. Furthermore. a normal lesson may not
introduce optimized methods, wherein some of the procedure's calculations
are performed internally and do not appear in the action sequence.

These two conventions are not arbitrary. They directly address two of the worst

combinatorial problems in induction. The first convention allows the learner to solve

the d~sjunction problem, which involves deciding when and where to place dislunctions

(The disjunction problem will be discussed at length in section 3.) For procedures. a

disjunction is a branching le.g a COND) in the flow of control. Convention 1, above

informs the learner that there will be at most one new dislunct per lesson. This cuts

" -'jai' S,er-a gene'vec -- ,v ziced-.es -rer 'an re Dn-s 'o v, n ne'e Z 1 ,-s: ar e 's..
nq" .es on _3 , ' " r i-:M 2 icnd ',,e -.e- s -2

-eu , ,e ;t bra , ''- S--i ai'ua'v z,-a.-es a , ' ,- r -' e " -e,
e,' pnce ,.p . . -*n[' ' . ' -, -' "" .T9 3'<C ... l e, " e -_ " , 3,): a '•" -

de,"ts ,e.a,- ,de'i'-.a . ., c ,- c ':,e u e '. ":g" "'e,, 'e:e, ,: d'"e m Ps> -, ;-."

. -e.P;J,-- -e n"P , e e . e .am e-s"i.

-.-. '%

5

5 5

. C .

LO 5 .5 *

4

L1 29 29 29
15 1 5 15

4 1 4

3 7 3 7 3 7':.- -... _
L2

4 4 4

3 3 3

12 8 12 8 12 8 12

L3 92 9/ /i 2/
44 44 44 44 .44

8 4 8

99"
14 10 14 2 10 14 2 X 14 2 14

L4 3 04 30OX 3/ /2(X "X /Vx
126 *12 6 -12 6 126 126 1 2 6

8
99

2 '14 2 14

1 2 6 1 2 6

7 8 1 7 8

14 10 14 10 10 14 7 10 10 14

L5 8 0 0 4 8 0 0/ 8 07,4 87o/(,', 7,A'/" -
1 2 9 1 2 9 1 2 9 1 2 9 1 2 9

9 99 99 99 99

7 X10 14 7X14 7 dX14 7 X14 7)dd14

129 129 129 129 129

5 75 875

9 9
7 14

-.- 129.

78 75 .

Figure 1-1: A simpie esson sequence for suotracton"

- -- - - - - -- -.. *. -.

* C C C *.* *.. . . --.

P1 -

P2

P5

Figure 1-2: Procedures oroaucei *rNmie traversing tfie lessor, seauerice
fig .

.. ,--. - - -...."
r

". .. _ . ; -. -.

7

down the possible places for disjunctions to a finite. small set and thereloy significantly

reducing the learner s search space of possible procedures. This makes the learner s

lob much easier In fact. it makes it possible as opposed to impossible The first

convention is named one-dislunct-per-Iesson.

The secono convention fulfills a similar function with regards to a second

combinatorial problemn the invisible oblects problem !f two visible objects in a slate

can be related by arbitrarily long chains of calculations with arbitarily many

intermediate results. then induction is combinatorially infeasible The intermediate results

are invisible objects because they don t appear in the examples If they could De

seen, the combinatorics would be substantially reduced The second convention

provides this Dy mandating that normal lessons explicate such chains by showing all

the intermediate results Optimization lessons may come along later and show how to

suppress the intermediate results and perform the calculations "in one s head "The

convention is called srtow-work.

To evaluate the efficacy of this approach, or any approach to learning from material

prepared by a teacher. one must evaluate burdens placed on both the teacher and

the learner One would expect there to be some work required of each. because

learn ing-f rom-lesson-sequences lies halfway between induction, where the learner does

most of the work. and learning-by-being-told. where the teacher does most of the work.

The teacnier s lob is to generate a lesson sequence for a given target procedure

that satisfies one-dlislunct-per-lesson and show-work. This task can be accomplished

mechanicaily if the teacher writes down the target procedure in an appropriate

proceoural language e g. Lisp But writing procedures can be quite a bit of work. A

more interesting possibility is that experienced teachers generate sucn lesson

sequences naturally, without even realizing that their lesson sequences ooey the two

conventions This is exactly what my research on naturally occuring lesson sequences

n mathematics shows (4, -45 Educators tend to generate well-formed lesson

3eauences even though thev orotablv are not aware of the conventions Apparently -

thev nav e an intuitive unconscious appreciation of the conventions This allows them

to generate appropriate lesson sequences Nithout going through !he work of exiciicating .

and formaiz~ing the Qrocecoures taught ov !nose curricula

-- l I

", - - - --. . . . - . L -I

8

This raises an interesting possibility for applications where a computer system learns

from a human user. sucn as programming-by-example systems (e.g.. 181) or learning

apprentice systems (e.g,. 1301) Such systems usually assume that there is no

meaningful structure in the example sequence that is presented to the system.

However, if that the users view themselves as teaching the system. they may order

their examples in certain ways. At the very least, they will present easy cases before

hard cases. If we had a precise definition of the ordering criterion that users tend to

employ, and if the learning system were designed to take advantage of these tacit

constraints on the instructional material then it could recover information that iS latent

in the sequential ordering. This latent information might allow it to converge faster -

and more reliably on the knowledge that the user is trying to teach it. One-dislunct- -.-

per-lesson and show-work are exactly such constraints, and they do make Sierra a

more effective learner. Further research is needed to see how domain-general they

are and to see whether there are other constraints like them.

It might seem strange that teachers should obey conventions like one-disjunct-per-

lesson and show-work without being aware of them. Looked at a different way. it

would seem strange if they didn't. The teacher-learner situation is an extended --

communication act. We know that people naturally unconsciously obey many

conventions on natural language communication acts (see. e g., [371). It seems entirely

likely that the teacher-learner discourse should also be formatted by conventions. In

the hope that this analogy is approximately correct, the conventions that govern

learning will be named felicity conditions, an early name for certain natural.

unconsciously-followed language conventions [4].

The point of felicity conditions is to make the learner s job easier without burdening

the teacher too much. One-disiunct-per-lesson and show-work make Sierras job rather

simple, although not trivial. The following is a quick sketch of how it works The

details will be presented later.

1 3 How Sierra tvorks

Sierra s algorithm is called learning cly comolet'nQ exclanations It begins ov trying to

oarse an action sequence. using the lrocedure as if it were a grammar but a

grammar Nith data flow conditional tests etc If oarsing succeeds tme resulting

carse tree is a trace (i e subroutine calling hierarctivi Ooked at in a aifferent :4av

• o" . °. • . -~~. - " . • - . -, - o - " • •

- i . - .. * - " " - " " . . t "' ' t _
-

"* " : % - - - -,a." -. A

the parse tree constitutes an "explanation" for the action sequence. For instance, a

partial explanation for an individual action in a sequence can be read off the parse

tree by walking upwards from the action i.e . the action was done in order to satisfy

the goals of the subprocedure that called it (which is the next node above it in the

parse tree). and the caller was executed in order to satisfy its caller. and so on. A

complete explanation for an action involves taking into account data flows and side-

effects. so explicit links for these effects are included in Sierra s parse trees. Such

links are analogous to the causal links that thread through the hierarchical structures

of explanations of. e.g.. kidnapping stories [101 So explaining an action sequence is

just parsing it Such parsing is a form of plan recognition (e g., [16. 20. 361).

The conditional tests and data flows of a procedure are used to guide Sierras

parser. significantly narrowing its search for a parse tree. However. the parser may

choose to relax such tests or ignore them entirely. This may allow it to find a parse

tree when it could not do so otherwise. If so. then a simple form of learning can be

performed The relaxations made by the parser are editted into the procedure. For

instance. if certain predicates in a conditional test must be ignored by the parser, then

Sierra removes them from the conditional. This generalizes the condition test. Now if

the parser redoes the narrow search, the one that obeys the constraints imposed by

conditional tests. etc.. it will find the parse tree Sierra has generalized the

procedure allowing it to explain examples that it could not explain before This

learning technique is similar to one form of expianatlon-oased learning

[10. 11, 14 32 391 A more interesting kind of learning occurs when it is

impossible to complete a parse. no matter how much the procedure is generalized In

this case. the learner's procedure is fundamentally incomplete. One or more new

subprocedures must be invented Learning by completing explanations is one approach

to accomplishing the learning required in this situation.

Sierra uses a straightforward technique A similar approach was employed in three

independent investigations [16 18 431 The first step is to parse tme action sequence

bottom-up as far as possible and top-down as far as possible The candidate

solutions to the learning task consist of any new subprocedure or set of new

subprocedures) that links the top-down parse to the bottom-up parse in such a way

that a compiete parse tree is vielaea Even for snort action sequences there can be

. . . ~ r _ .- - .- - - -. •.

10

millions of candidates The challenge is to cope with this large space of candidates

The solution used by the three independent investigators fibid Is to olace such

strong constraints on the parsing that only one (or a few) of the possible candidates

are generated My solution is to (1) use unconstrained parsing. (2) assume that only %".

one new subprocedure will be acquired and (3) use a factored data structure (similar

to LUNARs well-formed substring table [511 and GSPs chart (211) to efficiently

represent the space of possible candiates. The selection of a candidate from this

space is accomplished by a collection of simple filters.

This technique for learning by completing explanations makes it simple to perform

induction across several action sequences Each action sequence yields a space of

candidate solutions represented as a GSP-style chart, Induction amounts to

intersection of these spaces.

In principle, this technique can be used in any domain which learns hierarchical

knowledge structures from sequential examples. Thus, it should extend to learning

grammars from strings, learning story understanding schemata from stories, and

learning device models from the operation of machines,

Many of the basic intuitions behind Sierra have been presented. The remainder of

this article presents the details of how Sierra accomplishes its task. The first section

presents the knowvedge representation language used for procedures The next

section reviews the induction problem. and isolates disjunction as a key difficulty

One-disiunct-per-lesson is proposed as a central simplifying constraint for inducing

procedures. It in turn leads to the definition of "subprocedure." in section 4. in terms

of three parts: its skeleton. its patterns and its functions. This reduces the problem of

inducing a subprocedure to three subproblems. one for each part The subsequent

sections discuss the Sierra algorithms, for, respectively, skeleton induction. pattern

induction and 'unction induction The final sections discuss the generality of Sierra

and s~ecuiate on the origins and applications of felicity conditions

2. The representation of procedures

s convenient to use a mixture of nomenclature from oroduction systems and And-

*** *- * . a . .. - * % .

Or graphs (AOGS).4 The latter equivalence class of representations includes the one

used by Sierra. Although any of the formalisms could be used to describe Sierra s

representation the mixture of production systems and AOG is used here The

production systems nomenclation is good for showing details. the AOG view is good for

showing the overall structure.

Figure 2-1a sketches the AOG view of a subtraction procedure learned by Sierra.

The nodes are called goals. and links are called rules. Rules are directed and are

always drawn running downward. The nodes lust beneath a goal are called its

subgoals. Currently. there are two types of goals: AND and OR5 . To execute an AND

goal. all the subgoals are executed. To execute an OR goal. just one of the subgoals

is executed. AND goals are drawn with boxes around their labels. Drawings of AOGS

abbreviate goals whenever they appear more than once. For instance. OVRWRT IS

called from several places in the AOG of figure 2-1a. but its subgoals are drawn only

for one of these occurrences. Although abbreviation makes this AOG look like a tree.

. it is really a cyclic directed graph due to the recursive calls of MULTI and REGROUP.

AOG drawings do not indicate several kinds of information. This information is readily

visible in the production system view. Figure 2-1b shows the definitions for the non-

* primitive goals in the AOG of figure 2-1a. Goals have arguments. For instance.

SUBICOL has three arguments. T. B and A. Arguments have the substitution semantics

of lambda calculus. That is, the AOG language is applicatIve. There are no

assignment statements. The only side-effect operators are those that change the

external state. i.e.. writing a digit in an answer The applicative property has important

consequences that will be discussed later

A goal's rules (i.e.. the rules leading from it to its subgoals) are listed in its

definition. SUBCOL has three rules. Each rule has a pattern and an action.

Patterns are large, so in figure 2-1b, most patterns have been replaced by English

s weil known thai conte~t-free grammars. oush-down automata and oasic 'ranSMO01 nets are
euivaient In the same way. attrtoue grammars (221. affix grammars ,23! andt ATNs are eouivalent.
crcvided that side-eftec? coerators e g. SETO) are not used in the ATNs

, 3rler 'c acomodate -ertan emprcai ,ata, a ghrd)oat 'vce. ;OC EACH vii ye aooeo as a

"eoesentaton tir teration across a seduence)f Doiecis This qoa rye appears , ,q,,re 2 3 :s a,
PcO n !re ATN graph Currentlv Sierra recresents teration ,tn 'v ecur On"

Io.6 -

7-o •7

V *

12

START

REGROUP ritA ,MULTI

BO);jr, V/FRO~I BORRO/INTO/SUB0 UBRS

()..>(rilleA (Rod.T))

i/BFZ~ ~~~~~ ./B> I/I4W I/BORROW ORO /S"O

Coal STR /SPW TyTA) TOe:O
Q ->(WritoA(Rub(dT)) O

Goal A)B (P)e AND:AN

*Let T. B and A be top, bottom and answer of than Goal: REGROUP (T) Typo. ANO
rightmost column of problem P ..4 (1 /SUB T B A) Lot NT be the top digit of the 11ieft-1ad(flcent

column lto T -4 (BORROW/FROM NT)
Goal. I/SUB JTB A) Type: OR 2) .> (BORROW/INTO T)

Regrouping problem format-4* (REGROUP T)
There is a column to the left of T --. (MULTI TB8 A) Goal: BORROW/INTO (T) Type: OR

* ~3 (1*)(Write A (Sub (Read T)(Read B))) 0. (OVRWRT T (Concat (One)(Read T)))

Goal MULTI (TO0 A)Type: AND Goal: BORROW/FROM (TD) Type: OR
() -.>(SUB ICOL TB A) T~iszero .)(BFZ TO)
Let NT, NB & NA be the top, bottom & answerl G 0..> (OVRWRT TO (Subt (Read TO))
of the left-adjacent column to T

-)(SUB/REST NT NB NA) Goal: 8FZ (TD) Type: AND
IG.>(i.BFZ TO)

Goal. SUB/REST (TB8 A) Type: OR (->2BZD
There 13a column to the jailof T -- (MULTI TB8A)Gal1/
8 Bis blank --) (SHOW TA) B))): I/FZ (TO) Typei:OR

3()..) (Write A (Sub (Read T)(Read BM10- RERUUD

Goal SHOW (TB8 A) Type: AND Goal: 2/BFZ (TO) Type. OR
(I.(/SHOW TA) I G. (-)OVRWRT TO (Sub' (Read TO)))

Goal: I1/SHOW (T A) Type: OR Goal: OVRWRT (0 B) Type: AND
I I.(rtA(Od) () -- (X/OVRWRT 0)0 - >(WiteA (eadT))2 Let X be the blank space above D

Goal SUB 1 COL. (TB8 A) Type: OR -. > (W/OVRwRT X N)

8 Bis blank -- > (SHOW2 TA)
*T<B -.> (BORROW T BA) Goal: X/OVRWRT (0) Type. OR

3 3.)(Write A (Sub (Read T)(Read B))) O-(Crosaout 0)

Goat. SHOW2 (TB8 A) Type: AND Goal: W/OVRWRT (X D) Type. OR

Q(/SHOW2 TA) I() .-) (WriteX D)

Figure 2-1: A subtraction procedure shown as (al an A0. and (b)

a production system

13

glosses. A pattern is a conjunction of literals (i.e.. predicates or negated predicates).

Predicate arguments may be either arguments from the enclosing goal or pattern

variables. As an example. the pattern

(Column C)&(Top C T)&(Digit T)&(Bottom C B)&(Digit B)&(LessThan T B)

matches columns that require borrowing. The empty pattern always matches.

A rules action is a form, in the Lisp sense. which calls the rule's subgoal. The

action may pass arguments to the subgoal. often by evaluating functions. For

instance. SUBICOL S third rule has (Write A (Sub (Read T) (Read B))) as its action. .,-

This action writes the difference of the top and bottom digits of a column in the

columns answer

An OR goals rules are tested in left-to-right order. The first rule whose pattern

matches is executed. The learner adds new rules at the left. Hence. the left-to-right

ordering convention corresponds to a common conflict resolution strategy in production

systems called "recency in long term memory" [261. Because the patterns of OR rules

test whether to execute a rule. they are called test patterns. Although AND rule

patterns have the same syntax as oR rule patterns, they are not used to control which

rules are executed. The order of execution of AND rules is fixed: the rules are

executed in left-to-right order. AND rule patterns are used to retrieve information in the

current problem state so that the information can be passed to the rules subgoal.

AND rule patterns are called fetch patterns.

Any learning model that describes how knowledge is constructed from smaller units is

open to questioning about its set of primitives: what are the units that are assumed to

be present when learning begins? For completeness, table 2-1 lists the kinds of

primitives used by Sierra, and the particular ones employed to learn the procedures

discussed in this article. In addition to these primitives, the initial knowledge state

may contain non-primitive procedures as well For instance. the initial procedure from

which the procedure of figure 2-1 was learned contained the non-primitive goal

0VRWRT. which crosses out a symbol and writes another symbol over it The

multiplication procedures initial knowledge state included an additior' procedure

The procedural representation language has teen presented The remainder of this

section is a "walk througn" of the crocedure of figure 2.1 wnicM some reader may

°. ..-.

-. * ~ -- *' - .. ~- A,. -. *-. --

-- -. * ~ - -'* - -~ ~ ----.-u.---* - -o. ,.

14

1. Primitive actions cause a change in the current problem state. The only
primitive actions used in mathematics are ones that write a given
alphanumeric symbol at a given position (Write), or ones that write special
kinds of symbols iCrossOut puts a slash over a symbol: Bar writes a bar
under a group of symbols).

2. Fact functions return a number without changing the problem state. The
following fact functions were employed: Add, Sub, Addl. Subi. Mult, '

Quotient. Remainder. One (which always returns 1), Zero (which returns 0).
and Concat (which concatenates two numbers. e.g.. (Concat 1 4) returns
14)

3. Fact predicates return true or false without changing the problem state.
The fact predicates used were LessThan?, Equal?. and Divisible?.

4 The primitive function, Read. returns the symbol written at a given place

Table 2-1: The four kinds of primitives used by Sierra

find helpful as a way of cementing their understanding of the representation.

The root goal START. and its subgoal. Sue, initialize column traversal to start with

the units column '!sue chooses between three subgoals. MULTI is for multiple column

problems. REGROUP is for "regrouping" exercises that don't involve any subtraction at

all Regrouping is the part of borrowing where one digit is reduced by one and an

adjacent digit is increased by ten. This subgoal is left over from learning regrouping

separately from multi-column subtraction. (The lesson seauence of figure 1-1 lacks a

regrouping lesson. but most textbooks include one. This procedure was learned from

Heath's subtraction lesson sequence [131. which has a separate regrouping lesson.)

Normally, iiSuB never calls REGROUP The third goal, Write, is for single column

subtraction problems The "main loop" of multi-column traversal is expressed by Mu'.-

as a tail recursion. MUL7I calls itself via its subgoal SUB/REST SUB'COL processes a

column. It chooses between three methods for doing so If the bottom of the

column is blank. it copies the top of the column into the answer via the subgoal

,1'A2 If the top digit of the column is less than the bottom. it calls =ORRC, "

Otherwise it writes the difference of the two digits in the answer -_P nO',, i has two

subgoals IBoERROw calls REGROUP and 2'BORROw lust takes the difference in the

column and writes it in the answer PEGR UP S a conjunction of borrowing into the

d. .+....

15

column that originates the borrow (BOROW/INTO) and borrowing from the adjacent

column (BORROwIFROM). In this procedure. BORROW'FPOM Occurs before BORROWIINTO. it

would be equally correct to reverse their order. but that is not the way that Heath

teaches them. Borrowing into a digit is just adding ten to it Borrowing from tme

next column is also easy when its top digit is non-zero: the digit is decremented. If

the digit is zero. it calls BFZ. BFZ regroups, which causes the zero to be changed to

ten. then it decrements the ten to nine

3. Disjunction: an inherent problem for induction

For many kinds of induction tasks, there are proofs that the task has no algorithmic

solution. In such proofs, the induction problem is defined by specifying a class U of

all possible generalizations that the learner can output and a class T of all possible

trainings that the learner can receive. (The "U" stands for the learners universe of

generalizations.) There are a variety of theorems for various U and T For instance.

one such theorem is: If U is the class of recursive functions and T is the set of all

possible training sequences that contain all possible positive and negative examples. -.

then there is no Turing machine that can learn any given generalizations from U [35.

Proposition 5). Such negative results guarantee that there is no straightforward

solution to induction.

The standard attack is to incorporate biases into the inducer [28J. There are two

kinds. An absolute bias is a unary predictate on generalizations that says whether or

not the generalization should ever be output by the inducer. A relative bias is a

binary predicate on generalizations that says which of the two generalizations is

preferred for output in case both generalizations are consistent with the given training.

Often, absolute biases are implemented by representing generalizations in a limited

representation language. If the generalization can not be expressed in the language

(say, because the language lacks the appropriate primitives), then it will never be

output by the inducer. A relative bias. on the other hand. is usually defined by

comparing two formal expressions that represent the generalizations. Simplicity metrics

are a common relative bias. Al inducers often implement relative biases implicitly by

the order in which they search. Because they stop when they get to the first

generalization that is consistent with the training, the search strategies act as relative

biases In short. biases correspond to two obvious kinds of contraints: unary and

binary predicales on generalizations.

lp
* * %.-. .

._ %'.' % .,. '% ." .. %- -. .- -. .-.. ." . " .- .. .- . * . " .- - --...- ,. . . -

7 -, V7% 7

16
A non-standard approach is to employ a third kind of constraint, which could be

called a manner constraint. A manner constraint relates a generalization to the

manner in which the training is presented. A manner constraint is a binary predicate:

one argument is a generalization and the other is the form (syntax) of the training.

Both one-disjunct-per-lesson and show-work are manner constraints6.

Manner constraints are a known loophole to most formal learnability results. For

instance, a major result (171 is that it is impossible to learn when (1) T employs only

positive examples and (2) U contains a generalization for every finite set of examples

and a generalization for at least one infinite set of examples, unless (3) the examples

sequences in T are ordered by some primitive recursive function. That is. conveying

information with the order of the example sequences allows a learner to succeed

where it could not otherwise. The manner of example presentation is a factor that

hasn't been studied much. but is potentially quite important.

There are dozens of theorems on the learnability of certain U given certain T. In

order to obtain such results, it is necessary to be quite specific about what the U and

T are. Rather than review all these specific results, it seems more profitable for this

article to sacrifice formality in order to uncover the key components of Us and Ts that

cause induction to be impossible. In spirit. this strategy is like Newell's Knowledge

Level strategy of stepping back from the details of countless Al problems and

representations in order to analyze them from a single perspective, which he suggests

should be the perspective of first order logic [341.

In that spirit. I suggest that one of the inherent problems of induction is disjunction.

Whenever U allows a generalization to be built from the disjunction of any two other

members of U. then induction is infeasible.

More specifically. suppose that g and g' are two generalizations from U. Even

without knowing how they are represented. we can define their disjunction. Each

generalization has an extension, i .e.. the set of all possible examples (instances)

6rhe terminology could use a wfie clartication mere Peiicrtv ?onait,.ns are detined as .nreroren.e
• ;nsfrawts on Skill acquisition thai oecple ooev Ninout 1Oeng awae of -em -resumaolv. ore :OLd
exoCicnv teli students a manner ;onstraint. n .ncn case I . idnt)uaItv as a te,,c !v ,;nd,t I"
-resumaolv htee ::uid te felicrtv onCsionS nat aren t manner -o.Strawis. out. say. *elatrve oases

...

1704

consistent with the generalization Let x and x be the extensions of g and g'.

respectively The disjunction of g and g is any generalization whose extension is the

union of x and x. This is the definition of "disjunction" that will be used in this

article.

Disjunctions often correspond to syntactical constructions in representational language

In AOG representations, disjunctions correspond to OR goals. In context-free grammars.

a disjunction is present when two or more rules reduce the same non-terminal

category. In production systems. a production is potentially disjunctively related to all

the other productions, it requires careful analysis to uncover the actual disjunctive

relationships.

Inductions trouble occurs when the class of all possible generalizations admits free

disjunction. That is. the disjunction of g with g is in the class whenever g and g

are. When this is the case. induction acquires some strange properties that make is

seem quite unlike anything that one would want to call "learning."

Free use of disjunction allows the learner to generate absurdly specific

generalizations. One such absurdity is the trivially specific generalization. a disjunction

whose disjuncts are exactly the positive examples that the learner has received. Thus.

if the learner received positive examples a, 0 and c. then the disjunction iOR a 0 c) is

the trivially specific generalization. The trivially specific generalization is not really a

generalization at all. Its extension is just ;a b c:. The learner didn*t really learn. it

just remembered This problem could be solved with an arbitrary prohibition against

trivially specific generalizations. if nothing else But there is another problem that is

much worse

When disjunctions are unconstrained, the learner has to be given the complete

extension of the generalization being taught before it can reliably discriminate that

generalization from the others To see this first assume that for each example there

is a generalization in U wrose extension is that example and only that example This

's equivalent to assuming that the examples can be represented in the representation

language used for generalizations For instance, a grammar consisting only of the rule

S-->,v s such a generalization ,vhere S is tne root category and vv is a string of -'

ferminais This grammar s extension is the singleton set n Using such singleton

%';
U --. - -, . ;;- -'1

-i ;' - .: ,, ::::::::::: :::: ::: , -;::-,:'::--i", ,:::::-:~ .-:-.-.:i-: .:; .:: , _ ,,'..,t .:~ .::':-. , , : ::::; . - -.: ::. . .: ::L i .~

18

generalizations and disjunction. any finite set of examples can be described by some

generalization. To get the generalization for ,w1. w2:. one finds the generalization for

:w11 and for :w2:. then forms their disjunction. Since all finite sets of examples

correspond to generalizations, the learner cant tell which generalization ,s correct until

it is told exactly what the target generalizations extension is, This means it must be

shown all possible examples and be told which are positive examples and which are

negative examples. Such conditions, where a "learner" is shown a complete extension

of a generalization and asked to identify the generalization, hardly qualify as learning

Suppose learning is viewed as the following rather naive search for generalizations

This will provide another perspective on the trouble that disjunction causes. Suppose

that the learner receives an initial example and generates a single generalization.

Suppose further that the next example is a positive one that the learner's current
generalization is not consistent with. The learner has two choices: (1) to modify the

current generalization enough so that it becomes consistent with the new example, or

(2) to create a generalization specifically for the new example, then disjoin that

generalization with the current one Roughly speaking, these two choices are available

at every step. so after N examples, there will be roughly 2 N possible generalizations

consistent with the examples. The point is simply that the set of consistent

generalizations grows as the learner is given more positive examples. It doesn t

shrink, as one would intuitively expect of learning from examples On the other hand

if dislunction is barred from U. then there is only one choice at each step and the

set of generalizations does not grow unboundedly. So this learner s failure to learn

can be blamed squarely on dislunction.

One-dislunct-per-lesson would constrain this naive learners search while allowing

generalizations to contain dislunctions Most of the time. the learner would have a

single choice However, on the first example of each lesson it would have two

choices It can either disjoin or not If it chooses to disjoin then it may not disloin

again until the next lesson. If it chooses not to disloin then the twofold choice is

again availible on the next example One-dislunct-per-iesson is ,ndeed a 7

1n. ,4~ ')'. J.3 d 'P1,; "a -1,, 3,r' d -an riw- .*.J

!" ',{r :#e ' e ,e 3t, 00oSsi)'P e'.A,'nCIeS"

~ .o" .-.

. -I " - " "- " ' - ." - - ': -''

19 I

straightforward solution to the disjunction problem

One-dislust-per-iesson solves the disjunction problem by modifying the relationship

between T and U Absolute and relatives biases solve the dusiuction proolem by

modifying U A relative bias partially orders the elements of U by preferring e g..

generalizations with fewer disjunctions. An absolute bias removes from U all

generalizations that contain disjunctions (or contain more than 13 disjunctions. etcI In

general. biases modify U. and manner constraints modify the relationship between T

* and U

Biases are appropriate for a learning task when the learner can make strong a priori

assumptions about U. Manner constraints are appropriate when the learner can t make

assumptions about what s going to be learned, but it can make assumptions about

how its going to be taught. For Sierra s task domain, it is inappropriate to use biases

to solve disjunct problem. There is no reason for the learner to believe that a

procedure should have no condtionals (or less than 13 conditionalsl. so an absolute

bias against dislunction is inappropriate. There is no reason for the learner to believe

that a procedure with the fewer conditionals is better so a relative bias is also

inappropriate However given the felicity conditions hypothesis. there is reason to

believe that T and U are related. so a manner constraint such as one-disjunct-per-

lesson is appropriate

The preceding comments were meant to motivate the pragmatic utility of manner

constraints in general. and one-disjunct-per-lesson in particular by considering how

one-dislunct-per-lesson helps solve the disjunction problem. one of the inherent

problems of induction. Later. a similar motivation will be presented for the show-work

manner constraint, based on another inherent problem of induction the invisible oblects

problem. Manner constraints are a new technique for solving inherent problems in

induction Previous Al learners have employed either absolute biases or relative

Onases Although any addition to Al s toolkit of techniques is welcome manner

* onstraints seem particularly welcome, for they are remarkably general as the

Qreceding discussion argued and they are quite effective in reducing the complexity of

programs 0or fear-iing procedures, as the remainder of this article snows

--

-- - --- -' ... • " , - ',' '-l , ,1; "-...-..". .''.. . . .-. .. ' ' ..'.':'.* .'

% %20

4. Subprocedures

In order to make one-dislunct-per-lesson easy to mplement. the AOG representation

permits dislunctions in only one place. the OR goals. Thus, a dislunct is an OR goal s

rule plus. roughly speaking, whatever that rule calls Such fragments of AOGS are

called subDrocedures. A subprocedure consists of several components: .*-.%

1 A new OR rule that is placed beneath an existing oR goal. The existing

OR goal is called the carent"

2 A new AND goal. which is called by the new OR rule

3. The new AND has one or more rules. Each rule cals a new OR goal that
has lust one rule These O~s are merely a convenience. They provide a
place for later SuOprocedures to attach,

4 Each Such OR has a single rule that calls some existing AND goal. These
existing AND goals are called the kids.

Figure 4-1 illustrates these components of a subprocedure by showing an AOG before

and after a Subprocedure has been added This subprocedure was acQuired from a

lesson that teaches how to borrow across zeros. The pre-lesson AOG (figure 4-1a) can

borrow only from non-zero digits. the post-lesson AOG (figure 4-1b: which is the same

as figure 2-1) can borrow across zeros. 8ORRWiFROM is the subprocedures parent

The new OR rule connects SORROA;FROM to 8FZ. The new ANC Is SFZ The kids are

AEGROuP and DvRa.P" SFZ and 2BFZ are the new OR goals that are added as

places to attach future subprocedures.

One-disjunct-per-lesson takes us as a long way towards solving the whole procedure

induction problem Inducing a procedure is reduced to a series of subprocedure

induction problems one per lesson A subprocedure induction problem reduces to 77-

three subproblems

* Skeletons Skeleton induction determines the oarent and the kids of the
new subprocedure This establisnes the tooology of the new suborocedure

o, e the connectivity of the goals and rules) Because it doesn t jetermine
the conditions and action arguments of the ne-, rules skeleton induction ;s
like inducing only the oones and not the flesh of the suOproceaure

* Patterns One-dSlUnct-oer-Iesson entails that a r'jle ,; :qr"(itions nave no
dislunctions This means that they can de rlcucec nv stana ra

dislunction-free cattern nauction tecnnaQLes

- ..

21

21AM

BORROW/FROM BORRO /INTO SBCL_ U S

OvRWRT JL SHOW? BORROW Write MULTI SNOW

x/OVZWT W/O\\WAT 1/SHOW? 1/B ROW 218 ROW 1/SHOW

BORROW/FROM BORRO ANTO SUB8 ws S

BFZ VRWR r SHOW? BORROW Write MULTI SHO W Write

uSZ 2/BFZ 1/SHOW2 1/B ROW 2/ ROW 1 /SHOW

REGROUP OVRWRT

4X/O~v/WRT W/O WIRT

Figure 4-1: Ar 42-G tefore -A) ana 3fter 8\ a lessan The newv subQroceoure
S CirCleaj

- - - - - - . ., ."-

22 .

Functions: One-disjunct-per-iesson entails that disjunctions are not permitted
in the nests of functions that express te data flow in ACGS This makes
inducing those function nests easier However section 7 shows that
function nest induction is still infeasible unless more constraints are added
The show-work felicity condition is the key to Sierra s solution.

These three induction tasks will be discussed serially in tne following sections. In

Sierra. skeleton induction happens first using one oass over the lesson s examples.

Pattern and function induction occur together on a second pass over the examples.

S. Skeleton induction

To see what skeleton induction involves, a computer science fixture is needed: the

trace of a procedures execution. Figure 5-1 shows the trace tree for a correct

subtraction procedure (the procedure is shown in figures 2-1 and 4-1b) solving a BFZ

(i.e.. borrow from zero) problem. Each call is shown as a tree node. with its

arguments abbreviated, A trace tree is lust a parse tree for the action sequence.

using the procedure as the grammar.

Roughly speaking, a skeleton is a hole in a trace tree. If the procedure is missing

the B Z goal. then the trace tree would have a hole in the middle of it. as in figure

5-2 The gap is right where the 8FZ node would be. From the figure. one can see
that a skeleton can be characterized by the link coming into it from above and the

links leaving it from below. Thus. a skeleton is uniquely specified by the parent and

the kids

Almost all action sequences. including the example of figure 5-2. admit more than

one skeleton. Most of the ambiguity is due to the fact that one can almost always

make a skeleton bigger The kids can be lower in the tree (e g.. figure 5-3). the

parent can be higher (e g . figure 5-4) Any node that would complete an otherwise

incomplete trace tree is a legitimate skeleton.

Sierra uses two context-free grammar parsing algorithms to enumerate the skeletons

A too-down recursive descent parser is used to find all possible parents (It is actually

just a non-deterministic version of the regular AOG interpreter) A bottom-up, breadth-
first parser is used to find all possible kids, For each parent. all oossinle tuoies of

kids are collected vnere a kid tuple is a sequence of adlacent kids that together

span the same part of the action sequence as the parent. This generates the set of

V

** ,Qq o°

23

1/Sub

Mul :1 i's

Sub I col SubRest

Borrow I's
Multi 10's

1 /B rrow 2/Boi-row

Subicol SubRest

Regroup I's

BorrowFrom Borrowinto

BFZ 10's

I /BFZ 2/BFZ

Regroup 10's

BorrowFrom Borrowinto

Ovrwrt 4 Ovrwrt 10 Ovrwrt 9 Ovrwrt 17 Write 9 Write 7 Write 3

9 9 9 9 9
4 41o 4 .f 4 165 4 x 14t
S'07 S'7 ff07 5,0 22X'

-128 -128 -128 -1 28 -128 -128 -128
9 79 379

Figure 5-1: Trace tree for solution of a BFZ prob(em

24

Borrow 1's
Multi 10's

1/B rrow 2/Borrow

Subicol SubRest

Regroup i's

BorrowFrom Borr)winto

Regroup 10's

BorrowFrom Borrowlnto

Ovwr 4 Ovwt1 Ovrwrt 9 Ovrwrt 17 Write 9 Write 7 Write 3

9 9 9 9 9
4 410 t 4 617 4j, 4 te 4t
5'0 7 2'97 SV07 s4 240, O,4

-128 -128 -128 -1 28 -128 -1 28 -128

9 79 379

Figure 5-2: The skeleton is rignt where thie si,:Z node and ts Jauqi ers hvere

* - - - .. & . - -%

25

Borrow 1i.s
Multi 10's

1/B rrow 2/Borrow

Subicol SubRest

Regroup l's

BorrowFrom Borrowlnto

* f Ovrwrt 4 Ovwtl vrwrt 9 Ovrwrt17 Write 9 Wte Wrte 3

4 41o 4 td4d if1 4V4Vi
2'0 7 5'9~7 8'0/ SO211

*-128 -128 -128 -128 -128 -128 -128

9 79 379

Figure 5-3: The kidls of the skeleton Can be lower

26%%

NN

Mult Is

Borrow I's
M Iti 10's

1/8ro 2/Borrow

/BrrwSubicol SUbRest

Regroup 10's Regroup i's

BorrowFrom Borro wlnto BorwrmBorrowinto

Ovrwrt 4 Ovflwrt 10 Ovrwrt 9 Ovrwrtl 17 it Write7 Wi

9 9 9 9 9
4 4io 4v(rt~ t 1
ZO07 913r7 59~7

-128 -1 28 -128 -1 28 -128 -1 28 -128
9 79 379

Figure 5-4: The oarent of the skeleton can b~e higher

27

all possible skeletons In general there can be thousands of possible skeletons (e g

150 possible parentsi x l3 kids per kid tuple. on average) x (30 possible kids for each

tuple position on average) = 4500 possible skeletons.) Sierra represents this set

implicitly in order to save space

Notice that there would be many more possibilities if it weren t for one-diSlunct-per-

lesson For instance if two new subprocedures were allowed. then Sierra would have

to collect all possible pairs of parents. each with their possible kids. etc

Parsing Sierra s AOGS is equivalent to parsing attribute grammars, for which there are

many algorithms [46J Such parsing is quite simple because the language is

,plicative (i.e.. no side effects. no assignment statements). Once a goals arguments

are bound by its caller those values never change. The arguments act as a

subcategorization of the goal. This makes parsing nearly as simple as context-free

grammar parsing. If side-effects were allowed, parsing would still be possible, but it

would be combinatorially costly, because the left (precec.i g) context of a goal would

have to be included in the goal's subcategorization.

Bottom-up parsing requires inverse execution of AOG code. Sierra must be able to

figure out the arguments of a caller from the arguments of its callees. This requires

matching fetch patterns "backwards" and inverse evaluation of functions The first is

easy Matching patterns backwards is the same as matching them forwards.

Backwards evaluation of arithmetic functions. such as (Add x y). is accomplished by

hand-coded inverse functions that produce sets of tuples that represent possible input

values. This technique would collapse if it were not feasible to assume that examples

only use small numbers. If numbers could be arbitrarily large. then other techniques

(e g.. symbolic execution, followed by solution of a system of polynomial equations)

would have to be employed

The techniques lust mentioned generate one set of candidate skeletons per action

sequence One-disjunct-per-lesson entails that skeleton induction can be performed

simply by intersecting these sets Because a lesson may introduce lust one

suoprocedure all the skeletons parents must be the same Because the new

subProcedure is dislunction-free each skeleton s list of kids must be equal to each

other skeleton s list of kids In particular two kid tuples A - and A cannot be

-.----..---.-

, -.-.-,. .i .'L-i " - ' ". -:. . .-'. -"~ " " -"-. - .--.... * -. .- - . . . - --. . . -. .- -

rv. -.... *p~ ' ~j-. '~~ ~ lI -'. '-.....-- "' -. . ,~ v--- - - .

28

merged by using disjunction on the middle kid to form something like ,A OR B 0 C).

Skeleton intersection is powerful enough that it is usually possible to devise a lesson

that yields a unique skeleton when its examples' skeletons are intersected However

in some cases. this is not possible. In fact, the 9FZ skeleton that is our running

illustration cannot be uniquely specified by examplesa In such cases there is no

choice but to guess. This means that relative biases for skeletons are required

Sierra has been used to test various relative biases in order to find the ones that

explain the skeleton choices the people make. Sierra first generates all consistent

skeletons using parsing and skeleton intersection In manual mode. it displays them in

a menu and allows the user to choose one This is useful for exploration. In

automatic mode. Sierra partially orders the skeletons using the biases that are being

tested. Usually there is lust one skeleton that is maximal in the partial order If so.

Sierra just takes it and goes on. If there is more than one. Sierra chooses the first

one, then stores the learners state so that it can come back later and take the other

choices There is nothing new about this architecture but it is remarkable how easy

it makes it to search the space of hypotheses The current best hypothesis is that

people choose the smallest. most deeply embedded skeleton See [44. chapters 18

and 19. for a complete discussion

5 1 Prior solutions to the skeleton induction problem

Skeleton induction determines the procedure s goal-subgoal calling hierarchy.

Inducing such hierarchies has proved to be a tricky proolem in machine learning.

Neves [33j used hierarchical examples to get his procedure learner to build hierarchy.

However subtraction teachers rarely use such examples Badre [51 recovered

hierarchy by assuming examples are accompanied by a ,vritten commentary Each

instance of the same goal is assumed to be accompanied by the same vern (e g

"borrow") This is a somewhat better approximation to tie kind of inout that Students

3- ''P<-©o e5 , thp aistrinut7n -,t oran-rnes ., , ".p . ;.' - e , -a. r > '

9 ~ '' (+, -+ j/'e as ,arenr n _ ,, ,•

3 5 Seeton s 3 ,,ais 3 -o le % . , , .0. . - .

-.. * ---. _.; ,[, -?'+. + ' '~ .'Q , ' e , , t Ca
+,+

+ ;3 5 + +;. . . .: ' 3
+

" + +- + 'P,-' . ,

I-
.7

1-.

29

actually receive, but again it rests on delicate and often violated assumptions. Anza

and Simon [3) used production compounding (chunking) to build hierarchy However

to account for which of many hierarchies would be learned. Anzai used domain-specific

features. such as the pyramids characteristic of subgoal states in the Tower of Hanoi

puzzle. Sierra s technique, learning by completing explanations. is less domain specific

than Anzai and Simon s technique. and requires less information from the teacher than

Neves and Badres technique.

6. Pattern induction

The rules in the new suoprocedure must be given appropriate conditions. The new

OR rules require test patterns, and the new AND rules require fetch patterns, Because

patterns have no disjunctions nor other representational devices that trouble induction -.-

patterns can be induced using standard techniques. This section presents the ones

that Sierra uses. Athough pattern induction is not particularly interesting from a

theoretical standpoint. it has turned out to be the bottleneck in Sierra s performance. - -

Parsing an action sequence with the new subprocedure installed will pair the new OR

rule with a problem state where its test pattern would have to be true in order for the

parse to go through Such states are positive instances for the rest pattern

Similarly. parsing can uncover states where the test pattern would have to be false in

order for the parse to go through. These states are tne negative instances The test

pattern induction problem is to find a test pattern that matches all the positive

instances and none of the negative instances. Parsing also collects positive instances

for the fetch patterns, together with the values that the fetch patterns should return

The fetch pattern induction problem is to find a pattern that matches all the positive

instances and returns the appropriate values each time

Both induction problems are solved using version spaces (29! A version space is

represented by a pair <S.G> where S is the set of maximally soecit c patterns

consistent Nith the instances received so far and G is the set of maximally general

patterns consistent with the instances To use version spaces several application-

specific functions must be defined The most important two are Uodate-S and

Uiodate-G Given a version space ano a positive instance Ujpdate-S generalizes the

patterns in S so mar they matcn the instance ana remain maximally specific T0

implement cpdate-S Sierra uses an algorithm Pnat finds !te largest common suograr7h-

30

of two labelled directed graphs.9 Given a version space and a negative instance.

Update-G augments the patterns in G so that they do not match the negative instance.
Update-G is implemented with an algorithm for generating minimal covers of a set'

Sierra is designed so that pattern induction never finishes, A rule keeps the version

space of its pattern so that induction can continue whenever the pattern requires more

refinement. It is almost always the case that introducing a new subprocedure will

cause the patterns in older subprocedures to be modified. Those older patterns will

be "seeing" proolem states that they have never "seen" before namely. the ones that

trigger the new subprocedure and the ones that the new subprocedure produces. In

order to continue to function properly, the older patterns must be generalized to match

these new states The generalization of older patterns to match new situations is a

simple form of explanation-based learning, as the term is used by some authors

(cf ill])

Since pattern induction occurs so often. it needs to be fairly efficient. However, the

Update-S computation is NP-hard. and the Update-G routine calls it as a subroutine.

More specifically. if pattern P has n variables, and it is matched against a problem

state with m objects. then Update-S takes O(mn). These combinatorics reflect the

usual Al matching problem: Each variable in P can be paired with any object in the

problem state.

One way to deal with the complexity of pattern induction is to use a small n and/or -_-

m. For instance, blocks-world inducers (e.g., [12. 481) typically have an n and m of

less than 5. Using a small n and m is impossible in Sierras case. Its task domain

9 Sierras patterns are conluctions of litterals. wnere a itteral is a oredilale 2- a negated oredicate
Such patterns are similar to 'abeiled directed gra!ns. vnere the varaoles are .1 daes and me rEiat~nns
are labelled arcs. if all the predicates in a pattern are o,narv, the correspondence s exact

0tGiven a g from G that matches the negative nstance N. and an s from S inat dcesn r matcn N

-Pdate-G needs to ind relations in s to add to g Such that !he revised g Joesr '! marcn N :'oCate-G
*,st generates all possible mappings of the variables of s nto the .ariales N - Each SuCh napping
.ecomes an element -t the set or maps. M. to be covered. Each elation n s 9 oarecd l 'he suoset
)t M that contans :he maps under wmich the relation is not a memoe, o' N 7',e relator, s sad 'o

"ver' that subset of M A kev fact is that a conjunction of relations - r'tl i - e-V .t t ne ri,- ., Ot heir

,.'dual ":overs of M The main goal is to find the smallest coniun.tion "t -i "-r aa -?. es ':t f
Sucn a :ontunction iS not a member of N under any mai. so adding t to g .i vlelo a Qattern thai

ioesn t match N yn,,ch is what Ne Nant So the aigortrm for r'dig iqrl nima -overs D' M oelas
:andidates hOr ne revised g Some Dt -iese candidates nav generaize)t'ell ,o t ocare.G ",as ooe

more !ask, ,iiCb is to fitter out the cacadoates that are not maximally general

-- H - . -".- -..'.- - - - .--.- --. -

6 t D - I I
°

i I l ' ' " " -- ° ' ' ' " " " " " " " ' " " - ~" " " . . ." "

I. F.
--

31

requires proolem states with 10 to 50 objects The larger patterns in thie version

spaces have about the same flumoer of variables as oblects in the problem statesIthey were induced from The comloinatorics for straightforward pattern inducer can go
as nigh as 5030

A Second solution is to impose constraints on which variable-object mappings will be

considered Sierra uses two constraints. First. pattern variables have an implicit

inequality relationship between them That is. distinct variables must match distinct

Objects. This lowers the comoinatorics to the binomial coefficient fuction Ojn'/[ln-

m)'m') Second the patterns and problem states are split into two Components. a

part-whole tree and the rest In a problem state. the part-whole tree is simply the

usual parse tree for the mathematical notation For instance, a subtraction problems5

Parts are its columns and a column s parts are its digit In patterns, there are

variables for each of the components Ii e . a variable for the problem for each column

and for each digit). and their part-whole relationships are kept separately from the

main Pattern Pattern induction land pattern matching. too) considers only variable-

object mappings that do not violate the tree topologies This cuts the complexity

down to 0 8O(B"9), where B is the branching factor of the part-whole trees. typically

about three When this constraint is turned off in Sierra an Update-S that normally

takes t0 seconds takes hours. This constraint, or something like it. is a practical

necessity Even with it most of Sierra s time is spent running the pattern induction

algorithms 2 In a typical run. about 700/o of the time is spent doing pattern -

inductions

ca~r No)o~ s "P N i eect oi n a state. aria .-,ar -, -Pi ' oe aie"~.wi
- -5'3 'a ' a~a ~e' .an -niv ne zarea ~ i riecrs 3! 1 @ C ,~ '"e 3!a!fe

F,, -- ' miects. :rien s let ilar

S '~ ses a urthe, '.ick av,:-as3as 'ucl oate'n maic' no " .3t' Pe- '. r * e Ov
a ze r e w sA$e -" 113t Cass q''' e .oss~ .. ~1 C~a:I 3'1e'~''e ies oati'r-innq The se;" asz a-'ec i.-e" '-c,.-eo n

.3 31 's*3n ates '-- j' ic -f? pu 'c s !e zare' .- ~ J '

s,-ne 'rees a~e '3'ni e "'3- :33t" id9 1a: 1. . '-. .. -V

32
.-. ,

7. Function induction

Some of the rules in the new subprocedure may require function nests to be

induced for their actions. Functions are used to represent number facts. such as

(Sub 17 8)=9. A typica: function next is (Sub (Add 7 10) 8) This section discuss

how function nests can be learned. This learning task is called function induction

Function induction involves discovering which function or nest of functions will yield the

numbers shown in the examples. For instance, suppose the learner already knows

how to do single column subtraction problems. and it is taking a lesson on two-column

subtraction. After seeing examples a and b.

a. 72 b. 714
4 1 2 1
3 1 5 3----

there are many function nests that explain where the tens column answer comes from

Here are three candidates:

1. A, .'

2. A10 = T,+-

3. A, 0 = ((T c-,T,)-(B, 0 +B,))-A,

where the subscripts indicate the column, and T. B and A stand for the top. bottom

and answer The first generalization is the correct one. The second generalization is

that the ten s answer is the sum of the units columns' digits, This second

generalization, although consistent with examples a and b. is inconsistent with C:

c. 36
-1 2

24

Many such accidental generalizations can be eliminated by giving lots of examples.

However. generalization 3 can never be eliminated that way. It is true of any

subtraction problem. This may seem like a peculiarity of this case. but it isn t There

are infinitely many polynomials consistent with any finite set of input-output number 7

tuples In particular, there are infinitely many n-degree polynomials consistent with any

n points

;'he underlying problem has nothing to do viti he fact that functions and

o01ynomv als are the representation language of generalization Anv functional

-Z.

33

expression can be easily converted to a relational one For instance generalization 3

above could be expressed as

(AND (PLUS X T., T,)

6- (PLUS Y B,. B,)
(PLUS Z A,- A,)
(MINUS Z X Y)
(INVISIBLE X)
(INVISIBLE Y)
(INVISIBLE Z))

where (PLUS u v v) means u=v-+-w. The special relation INVISiBLE is needed because

X Y and Z do not match any of the visible objects in the examples. Under normal

confirmation conventions for relational descriptions [19], the variables match only visible

objects. so variables that designate invisible objects must be specially marked. and

that is what NVS,eLE does

Looked at this way. the underlying induction problem is clear: if the representation

allows invisible object designators. then there will always be far too many

generalizations consistent with any finite set of examples. Some constraint must be

placed on the use of invisible objects in examples. This induction problem will be

called the invisible objects problem.

7 1 Prior solutions to the invisible objects problem Z

Al's most common solution to the invisible objects problem is to ban invisible object

designators from the representation. For instance. Winston s blocks world

representation language [481 could have employed an elegant expression of the arch

concept if it allowed invisible objects:

(AND (ISA LINTEL 'PRISM)
(ISA LEGI 'BRICK)
(ISA LEG2 'BRICK)
(ISA GAP 'BRICK)
(INVISIBLE GAP)

(SUPPORTS LEGI LINTEL)
(SUPPORTS GAP LINTEL)
(SUPPORTS LEG2 LINTEL)
(ABUTTS LEGI GAP)
(ABUTTS GAP LEG2))

rnis says that the lintel rests on three abutting bricks, and the middle one :s invisible

Jsmg a Oifferentiv snadeo invisiole blocKs for the gap is a srrcile wNay to describe

. o

34

pyramidal. trapezoidal and circular arches as well as the rectangular arch above

However. the invisible objects problem makes it impossible to induce such descriptions

Once invisible blocks are allowed, they could be anywhere The :naucer would have

no way of knowing whether there was just one invisible block the gap or dozens lying

around all jumbled up Winston avoids the problem by omitting invisible oblect

designators from the representation. and employing the relationship

NCT TOUCHiNG LE31 _EG2' to express the gap between the arch s legs

Banning invisible object designators is one way to solve the invisible objects problem

But it won t work in the mathematical domain. Invisible object designators are needed

for representing procedures such as multi-addend addition. In the problem 1 .-3 5=9i

the intermediate result, either a 4 8 or 6, is invisible,

As mentioned earlier, absolute and relative biases are the two customary ways to

succeed at induction. An absolute bias, banning invisible objects. was just discussed.

For a relative bias. the obvious candidate is to prefer generalizations with the fewest

invisible objects. This is roughly what BACON3 does [241. It induces physical laws

given tables of idealized experimental data. For instance, it can induce the general

law for ideal gases when it is given "experiments" such as this one

(AND (MOLES 1.0)
(TEMPERATURE 300.0)
(PRESSURE 300000.0)
(VOLUME 0.008320))

This formal representation describes ihe experiment in the same way that Winston s

representation described a scene in the blocks world (this is not the representation

that EACON3 uses. by the way). The expression above says that there is one mole of

gas at a certain temperature and pressure occupying a certain volume. The goal of

ACCN3 is to find a description that is a generalization of the exoeriments that it is

given For experiments of this type the generalization that it induces is.

............-

1. ".7 7 IN" .7

r 35

(AND (MOLES N)
(TEMPERATURE T)
(PRESSURE P)
(VOLUME V)
(TIMES X1 P V)
(INVISIBLE X1)
(TIMES X2 N T)
(INVISIBLE X2)
(QUOTIENT X3 X1 X2)
(INVISIBLE X3)- ~~(CONSTANT X3)) ;'-

That is PV/NT is a constant This is one way to express the ideal gas law. which is

more widely known as pV=nRT where R=8.32. The intermediate results PV. NT and

PV/NT do not appear in the "scene" described earlier. This is what makes BACON3 S

lob hard. BACON3S method for solving this induction problem is. very roughly

speaking, to guess useful invisible objects descriptors and enter their values in the

scenes It might start by forming all binary function on the visible objects. e.g., NT.

P V. PP. PIT. etc. Since none of these yield values (invisible objects) that are

constani across all the scenes. it trys further compositions: NT/PV. NT+V. NTPV, etc.

At this level. it succeeds. since PV/NT turns out to be the same value. 8.32. in all the

scenes Essentially. BACCN3 solves the invisible object problem by choosing a

generalization with a minimal number of invisible object designators.

BACON3 is not an incremental inducer It assumes that it has the total example set

at the beginning. There is a reason for this. Any inducer that seeks a generalization

with the fewest invisible object designators would clearly want to entertain

generalizations with N-- I invisible object designators only after it had disconfirmed all

the generalizations with N invisible object designators However. adding an invisible

oblect designator to a disconfirmed generalization won t help it a bit. That is if f(g(x))

doesn t match a certain example, then wrapping an h(-) around it won help' 3 . This

means that failure at the level of N invisible oblects doesnt tell one anything about

what generalizations to use at the N - 1 level If the inducer is incremental and it is

at the N"' level, and the Mt example exhausts the level then the inducer must start

over at tme N 1 level and re-examine all M examples It wouid be better off lust

*,-'"' a E .iro e ae

. '... . . A, , * : -", *L ' A *,es _ i. -'CI A -.~ i 'A h]5 *I *. 'A. t' . *t'. *. -. .. , .. (t ,...---'.

36

waiting until the teacher told it that all the examples were presented. then do a non-

incremental induction. This would require a manner constraint. The teacher would

have to mark the example presentation, and the learner would have to understand.

such marks as indicating that it was okay to begin non-incremental induction. As it

turns out, naturally occuring mathematical curricula do employ a manner constraint, but

it is not the one just mentioned. The next subsection describes the one that actually

occurs.

7.2. The show-work felicity condition

In almost all cases. textbooks do not require the student to do invisible object

induction. Instead. whenever the text needs to introduce a subskill that has a mentally

held intermediate result, it uses two lessons. The first introduces the subskill using

special. ad hoc notations to indicate the intermediate results. Figures 7-1 and 7-2

show some examples. Since the intermediate results are written out in the first

lesson, the students need guess no invisible objects in order to acquire the subskill. -

The learning of this lesson may proceed as if invisible object designators were banned

from the representation language.

The second lesson teaches the subskill again, without writing the intermediate results.

The second lesson is almost always headed by the key phrase, "Here is a shorter

way to X" where X is the name of the skill. The students are being instructed that

they will be doing exactly the same work (i e., the path of fact functions is the same).

They are left with the relatively simple problem of figuring out how the new material

relates to the material they learned in the preceding lesson. This kind of learning is

a kind of optimization. They learn how to do the same work with less writing. So. the

normal lessons are 'show work" lessons: the learner does invisible object-free

induction. The marked lessons are "hide work" lessons: the learner does optimization

learning. The felicity condition is called "show-work Ihide-work" or lust show-work for

brevity.

7.3. Parallels between the invisible objects problem and the disjunction problem

The invisible object problem and the disjunction problem are similar in many

respects. (1) Both the invisible objects problem and the disjunction problem are
impossible to solve using unbiased induction f the ciass of all possible

generalizations allows free use of them then there are fai too many generalizations

37

t~~1+ 4 F= + 4=

5

+ 4 +4

Figure 7-1: Three formats for column addition obeying the show-work principle
Exercises appear unsolvea on the left. solved on the rigflt

38

2 3 2 3

1 38 1 8

6 3 6 6 +23

16 816 16 28

tens ones tens ones

2 9 2 9
+ 1 8 + 1 8

4 7 3 17

47

Figure 7-2: Oth'er exercise formats otoeying the show-work Drinciple

Exercises appear in normal format orn left, in snow-work format on right

f -.
39

consistent with any finite set of examples, Hence. both the disjunction problem and '

the invisible object problem require extra constraints. (2) Both can be solved trivially

with absolute biases: bar their representational devices from the representation

language. This is not a viable option in the mathematics domain because the target

procedures use both disjunctions and invisible objects. (3) In both cases a relative

bias that works is to minimize the use of the respective devices (i.e.. to prefer

generalizations with the fewest disjuncts and the fewest invisible object designators). (4)

For empirical reasons. minimization biases are not included in the theory. More

accurate hypotheses are based on felicity conditions. i.e.. tacitly held manner

constraints.

8. Task generality

Subtraction is the only task for which I have an extensive data from human learners.

so Sierra was developed primarily to simulate the learning of subtraction. In order to

make a rough assessment of its task generality. Sierra was given lesson sequences for

three new task domains whose lesson sequences were drawn from a popular

elementary mathematics textbook 113):

1 Aodalon of multi-column. multi-addend problems. such as

307 ---'-

81
+ 6 2 0 "'

2 Multiolication of multi-column multiplication problems, such as
3 0 7"-" %

x 2 5

3 Sixtn? grade algebra The skill is to solve linear equations with one
occurrence of one unknown. with natural number solutions. At the end of
the sixth grade students are expected to be able to solve 5(3x+ 1)=20 but
not 3x -2x=10 or 5(3x-1)=9

Sierra learned correct procedures for all three skills. although there are some

caveats to this assertion that will be discussed in a moment. Rather than go through

Sierra s learning in detail. this section describes the difficulties encountered and the

kinds of revisions that would be required resolve them.

One problem is that a FOPEACH goal type is needed Given a sequence of oblects

-- i- ,

40

of the same type (e.g., a sequence of columns), a FOEACH would execute a subgoal

on each object. This new goal type is needed because some naturally occuring

lesson sequences are not quite right for learning the tail-recursions that Sierra currently -
uses to implement loops. Although the lesson sequences can be easily modified, that

would harm Sierra's cognitive fidelity. To keep Sierra empirically accurate, a new

relative bias towards iteration is needed for skeleton induction This bias is most

effectively implemented by including the FOREACH goal type in the representation

language.

A problem was discovered during the last multiplication lesson. At the time of the

lesson. the learner can solve single-digit multiplier problems, such as (a) below

": 3
a. 57 b. 57

2 285 :

. 855

Note the use of the scratch marks to indicate carrying. The lesson teaches how to

do two-digit multiplier problems. such as (b) above. The addition subproblem presents

no difficulties for Sierra. because the initial knowledge state for multiplication includes

a multicolumn addition procedure that was learned from the addition lesson sequence

The problem with the lesson is that it does not use scratch marks to indicate

carrying. This causes two difficulties for Sierra. First. the textbook does not include

an optimization lesson to teach how to suppress carry marks (using examples such as

(c) below).

c. 57

285

Perhaps teachers present such examples on their own initiative, without the guidance

of a textbook lesson A more serious problem is that even it there were an

optimization lesson. there is no easy way to modify the multiplication procedure in

order to suppress the scratch marks. The procedure has a loop. whici iterates

leftward through the top row. multiplying the row s digits by the single-digit multiplier

A carried digit is written during one invocation of the loop body and read during

another invocation of the loop body (the next one in factl For this aataflow to

-41

happen applicatveiy without writing on the page, the second invocation must somehow'.

be called from the first invocation. There is no way to achieve this without a

complete overhaul of the procedures calling structure Sierra cannot do Such a major

overhaul. Im not sure what students do because I have no data for multiplication

However. I suspect that they do not radically overhaul their understanding of the .

procedure just to suppress scratch marks I suspect that they use their fingers to

hold the carried digit between multiplies or they use some snort-term memory resource

to do so. Implementing the latter possibility would entail making the representation

language non-applicative, which would make parsing much more complex On the

other hand. if students use their fingers, then the hypotheses and representation can

remain intact, but the representation of the state of a multiplication problem would

have to have a "hand" added to it Either modification would require significant

enough programming that I simply stopped Sierras traversal of the multiplication

sequence at this lesson. It was the last one. anyhow

The most significant task dependencies concerned notational syntax, This is not

surprising, since the four tasks employ quite different notations. Sierra's treatment of

problem states and their syntax has not yet been discussed in this article (see 144]).

The basic idea. however. is simple to present Problem states are represented as

letters, digits and lines situated on a Cartesian plane. and a two-dimensional context-

free grammar is used to parse them. This technique failed in some cases. For

instance, given the expression "5-x". the minus sign must be viewed two ways: as a

prefix for the term following it and as an infix operator that separates the two terms.

So there are two parse trees for "5-x," four for "2-+-(5-x)." and so on Sierra's

context free grammar technique is combinatorially explosive. A better solution would

be to redesign the parser and pattern matcher so that they keep local ambiguities

local This might. in fact. be the first step toward an interesting theory of the

interpretation of mathematical notation.

To sum up. there were two main difficulties in getting Sierra to learn other skills

than subtraction (1) The dataflow architecture is incomplete Some globally bound.

resource ie g fingers. short-term memory) is needed to do carrying without scratch -.

marks 12) The notational grammars are not quite expressive enough People seem

to view the same problem state several ways a facility that Sierra s grammar system

does not adequately Support

A. r.

42

9. Concluding remarks

Until now it seemed that to be successful an inducer had to use either absolute or

relative biases To put it differently successful inducers have either been partially

blind or strongly prejudiced Sierra is a demonstration that there is a third way An

inducer can be successful if it receives a well-structured example sequence whose

structure it understands. That is. the example sequence obeys certain manner

constraints and thereby encodes information about the structure of the target

generalization. The learner takes advantage of these constraints in order to recover

the "message" that is encoded in the form of the example sequence In human

learning situations. if neither teacher nor learner are aware of the manner constraints

then they warrant the name felicIty conditions So a successful inducer is either

partially blind, strongly prejudiced, and/or felicitiously taught

9.1 Some speculations on manner constraints and felicity conditions

In a certain sense, manner constraints may be optimal strategies for knowedge

communication. For instance. in order to solve the learner's disjunction problem, the

teacher's optimal strategy would be to point to a node in the learner's knowledge

structure and say "disjoin that node with the following subprocedure. " Clearly,

this is impossible. So the teacher says the next best thing. "Disjoin some node with

the following subprocedure:...." The learner must figure out which node to disjoin

because the teacher can't point to it. But the learner now knows that some

disjunction is necessary and that the examples following the teacher s command will

determine its contents. If it were not for the exigencies of school scheduling, this

would be perhaps the optimal information transmission strategy However lessons

must be about an hour long. This means that only some of the lesson boundaries

will correspond to the teacher s command to start a new disjunction. The other

lessons will finish up a previous lesson In short, the optimal. feasible manner

constraint for disjunctive information transmission could well be one-disluct-per-lesson.

There is a great cleal of complaining about the so-called knowledge acquisition

bottleneck in developing expert systems It seems to be quite difficult to get human

exoerts to formalize their expertise as e g.. production rules One often heard solution

's to have the system learn the knowledge on its own e g by discovery or by

analogy (e g 123. 281) I tend to agree with Simon [421, -vho predicts that

orogramming ijill always be the most effective way to "educate' computer However

- L1 - .<. ... TV - L-v

4 43
it Simon and I are wrong. and adhne learning does hold promise as a solution to

the knowledge acquisition bottleneck. then examining now human experts acquire their

knowledge is a good research heuristic Even a cursory examination shows that most

human experts didnt discover their knowledge or inter it they learned it from a %

mentor. either in school or as an apprentice A good mentor is careful about .

selecting tasks for the student that are appropriate for the students current state of

knowledge That is. the instruct:on is not a randomly ordered sequence of tasks, but

a carefully structured one Yet few researchers are trying to ge, an expert systems to 'I.

learn from the kinds of structured instruction that human experts receive. Such a

system would take advantage of the format that its mentor places on the instruction.

The present research. in its explication of felicity conditions, should be helpful in

building such a knowledge acquisition system Such a system will be easier for

human experts to educate than present systems because the experts, many of whom

are experienced teachers, are more familiar with formatting their knowledge as lesson

sequences than as production rules

9.2. Summary

Putting speculation aside I'll review the techniques that have been presented. The

formost is one-disjunct-per-lesson. Because of it. Sierra's design is quite simple. The

procedure induction problem is reduced to a series of subprocedure induction

problems. one per lesson. Subprocedure induction reduces to three subproblems:

skeleton induction. pattern induction and function induction.

--. v

Skeleton induction is performed by parsing the action sequences top-down as far as

possible and bottom-up as far as possible. In neither case will parsing yield a

complete parse tree To complete the parse tree. a new piece of tree structure must

be built to connect the top-down parse to the bottom-up parse. Any such structure is

a candidate skeleton This dual-parser calculation is done on each example in the

lesson, yielding one set of skeletons per example. These sets are intersected, yielding

the skeleton(s) that are consistent with all the examples in the lesson.

'' e + ,arnmer- 3art:cuLariv .iJer :nes are rCiT.-s 9 +':eor ons ldrlv ;f mere -.r,macurei 'ne~r
-cerse "t" l ri-' r r :,ia -is a,7 r -' T r ne cesoreac nvtnI n me no,,,iecige-
, i ree , u),:, ,r ma e, e rs p, a e -- 5,ts - u tr)rrmn

.
". S"

J' + "°-."S -r' . . , . " 'd """.' "< - "* S. " *"-' '" -+"- . "'--- ' '-;.'. + ,--' '

44

Pattern induction is performed by a standard technique. Mitchell's version space

algorithm [291.

Function induction can employ a brute force generate-and-test algorithm because

there is a manner constraint that simplifies the problem. The show-work constraint

says that examples must "show all the work" when introducing an new subprocedure.

That is. intermediate results must be written on the example where the learner can

"see" them. Because a composition (nest) of two primitive functions has an

intermediate result that is not written down. composite functions can not be introduced

during a normal lesson. Consequently, the learner only has to consider primitive

functions and not compositions of functions when it does function induction. The show

work constraint makes function induction almost trivial.

9.3. Discussion

The "per lesson" part of one-disjunct-per-lesson is slightly misleading. It turns out

that Sierra could get along just fine without lessons. The skeleton induction algorithm

is the one component that controls the introduction of disjunctions. The algorithm fails

only if an example introduces two or more disjuncts, In particular. just by omitting --

skeleton intersection. Sierra could get along fine without lesson boundaries. Its two

manner constraints would become (1) at most one disjunct per example, and (2) an

example is induced without invisible object designators unless it is marked as a same-

work example. A per-example learner might be more appropriate for some knowledge

acquisition tasks than the current per-lesson version.

It bears reiterating that the dual-parser technique that performs skeleton induction is

simple and efficient because the procedure representation language is applicative. If

the language allowed side-effects, such as storage of information in global buffers or

variables, then parsing would be much more difficult

As mentioned earlier Sierra consists of three induction algorithms. for. respectively.

skeletons. patterns and functions This three-way decomposition may apply to other

learning tasks than orocedure learning The application of the induction algorithms is

limited only by the topology of the knowledge representations and not, of course. by

what those knowledge representations denote I would expect these algorithms to

apply. for instance to other learning-by-explanation tasKs Explanations of stories often

-. -. - . - -. . .- -- -, - -. - -. 7 - . - .

[4-, ., .., ;. . - _ , , ,.,.1 + , - q , . -n ,. .. i. -.. .

feature hierarchical structures simiar to the calling structures of procedures Such

ex lanations are generated oi instantiating and composing schemata These schemata

are analogous to subprocedures Schemata often contain restrictions on slOtS tnat are

equivalent to patterns if these equivalences hold then learning new schemata could

be accomplished b0 the same tecnniques that are used here to learn subprocedures

o taKe a second examole elect'onic circuits and other engineered devices are often

designee to nave a hierarchy of modules This hierarchy corresponds to the calling

hierarchy of orocedures Patterns and functions may have analogs in device designs

3s weil f so then the techniques presented here might suffice to learn how to

anaiyze oevices in short the three-way decomposition of the induction problem into - ,

nouction of Mierarchies. induction of pattern-like constructs and induction compositions

may 1:e quite generally applicable.

Sierra s skeleton induction is a form of context-free grammar induction. since the

skeleton of a whole AOG is precisely a context-free grammar Skeleton induction can

De used to induce grammars. as long as the learners example sequence conforms to

one-dcisjunct-oer-example On the other hand, if one-disjunct-per-example is not an

appropriate manner constraint for some domain, then some other grammar induction

algorithm may be employed to perform skeleton induction, while the other two induction

algorithms can remain relatively unchanged (for reviews of grammar induction.

see 115 91)

A beneficial consequence of one-dislunct-per-lesson is that rule patterns are pure

conjunctions This means that a non-heuristic, complete induction algorithm, based on

Mitchell s version space technique [291. can be employed to induce the conditions.

However it turns out to be infeasible to use just the version space technique. For

emoirical reasons Sierra mus, use non-toy patterns A single pattern may have 50

variables and 200 relations For oatterns of such sizes. induction is lust not practical

.,4thcut further constraints on patterns Fortunately. there are several well-motivated

constraints available in this domain The two mentioned at the end of section 6 seem

ii ,ely to ce usefui Outside ,he oresent domain

The r'vto e oc!ects probiem Nas somewhrat of a surprise It took a long time to

•,gure i. at furcton induction nad an inherent oroblem wiie that Sierra wasn t a

.ictr. it ncc oete sets :t examples) It tooK even onger to become convinced that

...- S

46 "-,

there is no least-commitment, incremental algorithm to solve it. such as the version

spare algorithm. If an inducer cannot ban invisible object designators. there seem to

be only two ways to get around the invisible-objects problem: BACON3 S non-incremental

induction (see section 7) or Sierra's show-work manner constraint. Perhaos more

research will find other techniques. The problem of inducing invisible object

designators has received little attention from machine learning. L

7 .--

7"- -

! ~ ~ ~ ~ ~ ~ ~ ~ F !0 |-.-!! .!,

47

References

1. Amarel, S. Representations and modelling in problems of program formation In

Machine Intelligence 6. B Melitzer & 0. Michie. Eds.. Elsevier. New York. 1971

2. Anderson. JR "Acquisition of cognitive skill" Psychological Review 89 (1982)
369-406

3. Anzai. Y & Simon. H.A. 'The theory of learning by doing" Psychological Review
86 (1979). 124-140.

4. Austin. J. L. How to do things with words. Oxford University Press. New York.
NY. 1962.

5. Badre. N. A. Computer learning from English text. University of California at
Berkeley. Electronic Research Laboratory. Berkeley, CA. 1972. ERL-M372.

6. Bauer. M. A. A basis for the acquisition of procedures from protocols.
Proceedings of the Fourth IJCAI. 1975. pp 226-231.

7. Biermann. A. W. "On the inference of turing machines from sample
computations". Artificial Intelligence 10 (1972). 181-198.

8. Biermann. A.W. "The inference of regular LISP programs from examples" IEEE
Transactions on Systems. Man. and Cybernetics SMC-8. 8 (1978). 585-600.

9. Biermann. A.W. & Feldman. J.A. A survey of results in grammatical inference. In
S. Watanabe. Ed.. Frontiers of pattern recognition, Academic. New York. 1972.

10. DeJong, G. Generalizations based on explanations. Proceedings of IJCAI 1981.
Los Altos. CA, 1981.

11. DeJong, G. A brief overview of explanatory schema acquisition Proceedings of
the third Machine Learning Workshop, 1985. To appear in: T.M. Mitchell. J G.
Carbonell. & R.S. Michalski (eds.) Machine Learning: A Guide to Current Research.
Kluwer.

12. Dietterich. T G.. Michalski. R. C. A comparative review of selected methods for
learning from examples. In Machine Learning. An Artificial Intelligence ApOIroacn.
R. C Michalski, V. G. Carbonell. and T. M. Mitchell. Eds., Tioga Press. Palo Alto. CA

13. Dilley. C. A., Rucker. W. E. & Jackson. A. E Heath Elementary Matnpmatfcs
Heath. Lexington, MA. 1975.

14. ElIman. T. Explanation-based learning in logic circuit design Proceedlngs of ihe
Third Machine Learning Workshop 1985. To appear in T M Mitctiell C G Carvoneil
& R S. Michalski (eds) Machine Learning A Guide to Current Researcn ,a-_, i

15. Fu. K. & Booth, T "Grammatical inference Introduction ana sjre.
Transactions on System. Man ana Cybernetics 5 (1975). 95-111

16. Geneseretm M R The role of clans in intelligent teacring S'serns . ,.
Tutorinq Systems. Academic. New York. 1982

-. ,--..... -,. - . ".... -.- ". ,..

48

17. Gold. E M "Language identification in the limit". Information and Control 10
(1967) 447-474,

18. Hedrick. C L. "Learning production systems from examples" Artificial Intelligence
(1976). 21-49"

19. Hempel. C.G "Studies in the logic of confirmation" Mind 54 (1945). 1-26.
97-121-

20. Johnson. L. & Soloway. E, Intention-based diagnosis of programming errors.
Proceedings of AAAI-84. 1984. pp. 162-168.

21. Kaplan. R. M. A general syntactic processor. In Natural Language Processing.
R Rustin. Ed.. Algorithmics Press. New York. 1973.

22. Knuth. D.E. "Semantics of context-free languages" Mathematical Systems Theory
2 (1968). 127-145.

23. Koster. C H.A. Affix grammars. In J.E. Peck, Ed.. ALGOL 68 Implementation.
North-Holland, Amsterdam, 1971.

24. Langley, P. Rediscovering psysics with Bacon 3. Proceedings of the Sixth
IJCAI. IJCAI. Kaufman. Los Altos, CA, 1979.

25. Langley. P.. Ohlsson, S. & Sage. S. A machine learning approach to student
modeling. CMU-RI-TR-84-7, Carnegie-Mellon University, Pittsburgh, PA. 1984.

26. McDermott. J. & Forgy, C.L. Production system conflict resolution strategies. In
Pantern-directed inference systems, Academic. New York. 1978.

27. Miller. M.L. & Goldstein. I P Overview of a linguistic theory of design. 383A.
M I T. Artificial Intelligence Laboratory. Cambridge, MA. 1977

28. Mitchell. TM. The need for biases in learning generalizations. CBM-TR-117,
Rutgers University Computer Science Department, Rutgers. NJ. 1980.

29. Mitchell. T.M "Generalization as search". Artificial Intelligence 18 (1982).
203-226

30. Mitchell T M Mahadevan. S. & Steinberg. L A learning apprentice system for
VLSI desigr Proceedings of the Third Machine Learning Workshop, 1985 To appear
in T M Mitchell, J G Carbonell. & R.S. Michalski (eds) Machine Learning. A Guide to
Current Research. Kluwer

31. Mitchell. T M Utgoff P E & Banerli R. 8 Learning problem-solving heuristics
by experimentation In Macinme Learning. R. S Michalski. T. M. Mitchell &
J Carboneil Eds Tioga Press. Palo Alto. CA. 1983.

32. Mooney R Generalizing explanations of narratives into schemata Proceedings
of the Third Machine Learning Workshop, 1985. To appear in. T M Mitchell. J G
Carbonell & R S Michalski teds I Machine Learning: A Guide to Current Research
Kluwer , -

49 -

33. Neves. D M Learning procedures from examples. Ph.D Th. Department of
PsyChology. Carnegie-Mellon University. Pttsburgh PA. 1981 18

34. Newell. A. "The Knowledge Level" Artificial Intellhgence 18 (1982). 87-127

35. Osherson. D N Slob. M. & Weinstein. S "Ideal learning machines" Cognitive

Science 6 (1982) 277-290

36. Rich. C & Shrobe. H. Initial report on a lisp programmer s apprentice. Al-

TR-354. M I T. Al Lab. Cambridge MA. 1976 -,

37. Searle J Soeech Acts An essay in the pnilosopnly of language. Cambridge

University Press. Cambridge. GB. 1969.

38. Segre A.M. Explanation-based manipulator learning. Proceedings of the Third

Machine Learning Workshop. 1985. To appear in: T.M. Mitchell. J.G. Carbonell. & R S,

Michalski (eds.) Machine Learning: A Guide to Current Research. Kluwer.

39. Shavlik. J. Learning classical physics. Proceedings of the ,hrd Machine

Learning Workshop. 1985. To appear in: T.M. Mitchell, J.G. Carbonei. & R.S.

Michalski leds.) Machine Learning: A Guide to Current Research. Kluwer.

40. Shaw. D E., Swartout. W.R. & Green. CC. Inferring lisp programs from

examples. Proceedings of the fourth IJCAI, Los Altos. CA, 1975.

41. Siklossy, L. & Sykes. D.A. Automatic program synthesis from example problems.

Proceedings of IJCAI-4. Los Altos, CA. 1975.

42. Simon. H.A. Why should machines learn? In Machine Learning. An Artificial

Intelligence Approach. Tioga. Palo Alto. CA. 1983. - -

43. Smith, D. E Focuser: A strategic interaction paradigm for language acquistion.

Tech. Report LCSR-TR-36. Laboratory for Computer Science Research. Rutgers -

University. 1982. Rutgers. NJ.

44. VanLehn. K. Felicity conditions for human skill acquisition: Validating an Al-

based theory. Tech Report CIS-21. Xerox Palo Alto Research Center. 1983.

45. VanLehn. K. Human procedural skill acquisition: Theory. model and psychological
validation Proceedings of AAAI-83. Los Altos. CA. 1983.

46. Watt. D.A. "The parsing problem for affix grammars" Acta Informatica 8 (1977).
_-20.

47. Winston. P H. Learning structural descriptions from examples. Al TR-231. M.I T

Al Laboratory. Cambridge. MA. 1970,

48. Winston P H Learning structural descriptions from examples. In The

Osvcnoiogy or Comourer Vision P H Winston. Ed McGraw-Hill New York. 1975

49. Winston P H .-earning by creating transfer frames' Artificial Intelligence 10
'978') 147-172

50. Wnston P H Le3rning new principles from prececents and exercises AIM 632

'A I T Al Laboratory Cambridge MA 1981

50

51. Woods. W A. Kaplan. R.. Nash-Webber. B. The lunar sciences natural language
information system. BBN Rept. 2378. Cambridge. MA. Bolt. Beranek. & Newman.
1972,

Personnel Analysis Division, Dr. Gautam Biswas
AF/MPXA Department of Compbter Science

5C360, The Pentagon University of South Carolina
Washington, DC 20330 Columbia, SC 29208

Air Force Human Resources Lab Dr. John Black
AFHRL/MPD Yale University
Brooks AFB, TX 78235 Box 11A, Yale Station

New Haven, CT 06520
AFOSR,

Life Sciences Directorate Arthur S. Blaiwes -..Boiling Air Force Base Code N711
Washington, DC 20332 Naval Training Equipment Center

Orlando, FL 32813
Dr. Robert Ahlers
Code N711 Dr. Jeff BonarHuman Factors Laboratory Learning R&D Center
NAVTRAEQUIPCEN University of Pittsburgh
Orlando, FL 32813 Pittsburgh, PA 15260

Dr. Ed Aiken Dr. Richard Braby
Navy Personnel R&D Center NTEC Code 10
San Diego, CA 92152 Orlando, FL 32751

Dr. Earl A. Alluisi Dr. Robert Breaux
HQ, AFHRL (AFSC) Code N-095R
Brooks AFB, TX 78235 NAVTRAEQU:FPEN

Orlando. FL 32813
Dr. John R. Anderson
Department of Psychology Dr. Ann Brc-an
Carnegie-Mellon University Center for the Study of Reading
Pittsburgh, PA 15213 University of Illinois

51 Gerty Drive
Dr. Steve Andriole Champaign, iI. 61280
Perceptronics, Inc.
21111 Erwin Street Dr. John S. Erown
Woodland Hills, CA 91367-3713 XEROX Palo Alto Research

Center
Technical Director, ARI 3333 Coyote Road
5001 Eisenhower Avenue Palo Alto, CA 94304
Alexandria, VA 22333

Dr. Bruce E. hanan
Dr. Patricia Baggett Computer Sc_ nce Department
University of Colorado Stanford University ,\ ,
Department of Psychology Stanford, CA 94305
Box 345
Boulder, CO 80309 Dr. Patrci: A. Butler

NIE Mail Step 1806
Dr. Meryl S. Baker 1200 19th St., N"W
Navy Personnel R&D Center Was:*'ington, DC 20208
San Diego, CA 92152

. - - - . , i,, -" i I I -I " I II I

Dr. Robert Calfee Mr. Raymond E. Christal
School of Education AFHRL/MOE
Stanford University Brooks AFB, TX 78235
Stanford, CA 94305

Dr. Yee-Yeen Chu
Dr. Jaime Carbonell Perceptronics, Inc.
Carnegie-Mellon University 21111 Erwin Street
Department of Psychology Woodland Hills, CA 91367-3713
Pittsburgh, PA 15213

Dr. William Clancey t

Dr. Susan Carey Computer Science Department
Harvard Graduate School of Stanford University

Education Stanford, CA 94306
337 Gutman Library
Appian Way Scientific Advisor
Cambridge. MA 0138 to the DCNO (MPT)

Center for Naval Analysis
Dr. Pat Carpenter 2000 North Beauregard Street
Carnegie-Mellon University Alexandria, VA 22311
Department of Psychology
Pittsburgh, PA 15213 Chief of Naval Education

and Training
Dr. Robert Carroll Liaison Office
NAVOP 01B7 Air Force Human Resource Laboratory
Washington, DC 20370 Operations Training Division

Williams AFB, AZ 85224
Dr. Fred Chang
Navy Personnel R&D Center Assistant 3-.ef of Staff
Code 51 for Research, Development,
San Diego, CA 92152 Test, an Evaluation

Naval Educbtion and
Dr. Davida Charney Training Command (N-5)
Department of Psychology NAS Pensacola. FL 32508
Carnegie-Mellon University
Szhenley Park Dr. Allan M. Collins
Pittsburgh, PA 15213 Bolt Berane< & Newman, Inc.

50 Moulton Street
Dr. Eugene Charniak Cambridge, '-A 02138
Brown University
Computer Science Department Dr. Stanley 7ollyer
Providence, RI 02912 Office of Ni.:al Technology

800 N. Quincy Street
Dr. Michelene Chi Arlington, VA 22217
Learning R & D Center
University of Pittsburgh CTB/McGraw-HJI1 Library
3939 0'Hara Street 2500 Garden Road
Pittsburgh, PA 15213 Monterey, CA 93940

Dr. Susan Chipman CDR Mike Curran
Code 442PT Office of Naval Research
Office of Naval Research 800 N. Quincy St.
800 N. Quincy St. Code 270
Arlington, VA 22217-5000 Arlington, 'VA 22217-5000

• • " - -. .- • * . ***. .'' ' " "'- . *i .;.-" "' '" •. " .-' ... ,. ". " - " " . -- " ' - .

Bryan Dallman ERIC Facility-Acquisitions . .p'
AFHRL/LRT 4833 Rugby Avenue *
Lowry AFB, CO 80230 Bethesda, MD 20014

Dr. Charles E. Davis Dr. K. Anders Ericsson
Personnel and Training Research University of Colorado
Office of Naval Research Department of Psychology
Code 442PT Boulder, CO 80309 N .

800 North Quincy Street
Arlington, VA 22217-5000 Edward Esty

Department of Education, OERI
Defense Technical MS 40

information Center 1200 19th St., NW
Cameron Station, Bldg 5 Washington, DC 20208
Alexandria, VA 22314
Attn: TC Dr. Beatrice J. Farr
(12 Copies) Army Research Institute

5001 Eisenhower Avenue
Dr. Thomas M. Duffy Alexandria, VA 22333
Communications Design Center
Carnegie-Mellon University Dr. Marshall J. Farr
Schenley Park 2520 North Vernon Street
Pittsburgh, PA 15213 Arlington, VA 22207

Edward E. Eddowes Dr. Pat Federico
CNATRA N301 Code 511
Naval Air Station NPRDC
Corpus Christi, TX 78419 San Diego, A 92152

Dr. John Ellis Dr. Jerome A. Feldman
Navy Personnel R&D Center University :f Rochester
San Diego, CA 92252 Computer Science Department

Rochester, NY 14627

Dr. Richard Elster
Deputy Assistant Secretary Dr. Paul Felzovich

of the Navy (Manpower) Southern Ili<.nois University
Washington, DC 2C350 Scnool of M icine

Medical Edu:-tion Department
Dr. Susan Embretson P.O. Box 39"-
University of Kansas Springfield, IL 62708
Psychology Department
Lawrence, KS 66045 Mr. Wallace -eurzeig

Educational Tecnnology
Dr. Randy Engle Bolt Berane ' & Newman
Department of Psychology 10 Moulton E.
University of South Carolina Cambridge, 0-. C2238
Columbia, SC 29208

Dr. Craig I. Fields
Dr. William Epstein ARPA
University of Wisconsin 1400 Wilson Elvd.
W. J. Brogden Psychology Bldg. Arlington, VA 22209
1202 ;. Johnson Street
Madison, WT 53705

. ..-.

[-. .*

Dr. Linda Flower Dr. Arthur M. Glenberg

Carnegie-Mellon University University of Wiscbnsin
Department of English W. J. Brogden Psychology Bldg.

Pittsburgh, PA 15213 1202 W. Johnson Street
Madison, WI 53706

Dr. Ken Forbus
Department of Computer Science Dr. Marvin D. Glock

University of Illinois 13 Stone Hall
Champaign, IL 61820 Corr.ell University

Ithaca, NY 14853
Dr. Carl H. Frederiksen
McGill University Dr. Gene L. Gloye

3700 McTavisn Street Office of Naval Research

Montreal, Quebec H3A 1Y2 Detachment
CANADA 1030 E. Green Street

Pasadena, CA 91106-2485
Dr. John R. Frederiksen
Bolt Beranek & Newman Dr. Sam Glucksberg

50 Moulton Street Princeton University
Cambridge, MA 02138 Department of Psychology

Green Hall

Dr. Norman Frederiksen Princeton, NJ 08540

Educational Testing Service
Princeton, NJ 08541 Dr. Joseph Goguen

Computer Science Laboratory

Dr. R. Edward Geiselman SRI International

Department of Psychology 333 Ravensw;zod Avenue

University of California Menlo Park, CA 94025
Los Angeles, CA 90024

Dr. Sherrie Gott

Dr. Michael Genesereth AFHRL/MODJ
Stanford University Brooks AFB, TX 78235
Computer Science Department
Stanford, CA 94305 Dr. Richard H. Granger

Department of Computer Science
Dr. Dedre Gentner University cf California, Irvine

University of Illinois Irvine, CA ;2717
Department of Psychology
603 E. Daniel St. Dr. Wayne Gray

Champaign, IL 61820 Army Researcn Institute
5001 Eisenhc.;er Avenue

Dr. Don Gentner Alexandria, VA 22333
Center for Human

Information Processing Dr. James G. Greeno

University of California University cf California

La Jolla, CA 92093 Berkeley, CA 94720

Dr. Robert Glaser Dr. Henry M. Halff

Learning Research Haiff Resources, Inc.

& Development Center 4918 33rd Road, North

University of Pittsburgh Arlington, VA 22207 r

393? O'Hara Street

Pittsburgh, PA 15260

- .4

Dr. David R. Lambert Dr. Clayton Lewis
Naval Ocean Systems Center University of Colorado
Code 4I41T Department of Computer Science "
271 Catalina Boulevard Campus Box 430
San Diego, CA 92152 Boulder, CO 80309

Dr. Pat Langley Science and Technology Division
University of California Library of Congress
Department of Information Washington, DC 20540

and Computer Science
Irvine, CA 92717 Dr. Charlotte Linde

SR: International
M. Diane Langston 333 Ravenswood Avenue
Communications Design Center Menio Park, CA 94025 ..f
Carnegie-Mellon University
Schenley Park Dr. Marcia C. Linn
Pittsburgh, PA 15213 Lawrence Hall of Science

University of California
Dr. Kathleen LaPiana Berkeley, CA 94720
Naval Health Sciences

Education and Training Command Dr. Don Lyon
Naval Medical Command, P. 0. Box 44

National Capital Region Higley, AZ 85236
Bethesda, MD 20814-5022

Dr. Jane Malin

Dr. Jill Larkin Mail Code SR 111.
Carnegie-Mellon University NASA Johnson Space Center
Department of Psychology Houston, TX 77058
Pittsburgh, PA 15213

Dr. William L. Maloy (02)
Dr. Robert Lawler Chief of Naval Education
Information Sciences, FRL and Training
GTE Laboratories, Inc. Naval Air Station
40 Sylvan Road Pensacola, FL 32508
Waltham, MA 02254

Dr. Sandra P. Marshall
Dr. Paul E. Lehner Department of Psychology
PAR Technology Corp. University cf California
7926 Jones Branch Drive Santa Barbar-a, CA 93106
Suite 170
McLean, VA 22102 Dr. Manton ' Matthews

Department c:" Computer Science
Dr. Alan M. Lesgold University cf South Carolina
Learning R&D Center Columbia, SC 29208
University of Pittsburgh
Pittsburgh, PA 15260 Dr. Richard E. Mayer

Department cf- Psychology ..:

Dr. Jim Levin University cf California
University of California Santa Barbara, CA 93106
Laboratory for Comparative

Human Cognition
DOO3A
La Jolla, CA 92093

**.* *, , ,

- 4~~* U

Dr. James McBride Dr. Allen Munro
Psychological Corporation Behavioral Technology
c/o Harcourt, Brace, Laboratories - USC

Javanovich Inc. 1845 S. Elena Ave., 4th Floor
1250 West 6th Street Redondo Beach, CA 90277
San Diego, CA 92101

Spec. Asst. for Research, Experi-
Dr. James McMichael mental & Academic Programs,
Navy Personnel R&D Center NTTC (Code 016)
San Diego, CA 92152 NAS Memphis (75)

Millington, TN 38054
Dr. Barbara Means ,-
Human Resources Dr. Richard E. Nisbett

Research Organization University of Michigan
1100 South Washington Institute for Social Research
Alexandria, VA 22314 Room 5261

Ann Arbor, HI 48109

Dr. Arthur Melmed
U. S. Department of Education Dr. Donald A. Norman
724 Brown Institute for Cognitive Science
Washington, DC 20208 University of California

La Jolla, CA 92093
Dr. Al Meyrowitz
Office of Naval Research Director, Training Laboratory,
Code 433 NPRDC (Code 05)
800 N. Quincy San Diego, CA 92152
Arlington, VA 22217-5000

Director, Manpower and Personnel
Dr. George A. Miller Laboratory,
Department of Psychology NPRDC (Code 06)
Green Hall San Diego, CA 92152
Princeton University
Princeton, NJ 08540 Director, Human Factors

& Organizational Systems Lab,
Dr. Lance A. Miller NPRDC (Code 07)
IBM Thomas J. Watson San Diego, CA 92152

Research Center
P.O. Box 218 Fleet Support Office,
Yorktown Heights, NY 10598 NPRDC (Cede 301)

San Diego, CA 92152
Dr. Andrew R. Molnar
Scientific and Engineering Library, NPRDC

Personnel and Education Code P201L
National Science Foundation San Diego, CA 92152
Washington. DC 20550

Commanding Officer,
Dr. William Montague Naval Research Laboratory
NPRDC Code 13 Code 2627
San Diego, CA 92152 Washington, DC 20390

. .-.

.

Dr. Ronald K. Hambleton Dr. Geoffrey Hinton
Laboratory of Psychometric and Computer Science DMpartment

Evaluative Research Carnegie-Mellon University
University of Massachusetts Pittsburgh, PA 15213
Amherst, MA 01003

Dr. Jim Hollan i'"
Dr. Cheryl Hamel Code 51
NTEC Navy Personnel R & D Center
Orlando, FL 32813 San Diego, CA 92152

Stevan Harnad Dr. John Holland
Editor, The Behavioral and University of Michigan

Brain Sciences 2313 East Engineering
20 Nassau Street, Suite 240 Ann Arbor, MI 48109
Princeton, NJ 08540

Dr. Melissa Holland
Mr. William Hartung Army Research Institute for the
PEA11 Product Manager Behavioral and Social Sciences
Army Research Institute 5001 Eisenhower Avenue
5001 Eisenhower Avenue Alexandria, VA 22333
Alexandria, VA 22333

Dr. Keith HolyoakDr. Wayne Harvey University of MichiganSRI International Human Performance Center
333 Ravenswood Ave. 330 Packard Road
Room B-$324 Ann Arbor, MI 48109
Menlo Park, CA 94025

Dr. Ed Hutchins
Prof. John R. Hayes Navy Personnel R&D Center
Carnegie-Mellon University San Diego, CA 92152
Department of Psychology
Schenley Park Dr. Dillon Inouye
Pittsburgh, PA 15213 WICAT Education Institute

Provo, UT 84057
Dr. Barbara Hayes-Roth
Department of Computer Science Dr. S. Iyenzar
Stanford University Stanford University
Stanford, CA 95305 Department of Psychology

Bldg. 4201 -- Jordan Hall
Dr. Frederick Hayes-Roth Stanford, CA 94305
Teknowledge
525 University Ave. Dr. Zachary Jacobson
Palo Alto, CA 94301 Bureau of management Consulting

365 Laurier Avenue WestDr. Joan I. Heller Ottawa, Ontario KIA OS5
Graduate Group in Science and CANADA

Mathematics Education
c/o School of Education Dr. Robert Jannarone
University of California Department cf Psychology
Berkeley, CA 94720 University of South Carolina

Columbia, SC 29208

%I

.. -.'' 4

.Y7 . '" W

Dr. Claude Janvier Dr. Dennis Kibler

Directeur. CIRADE University of California
Universite' du Quebec a Montreal Department of Information
Montreal, Quebec H3C 3P8 and Computer Science
CANADA Irvine, CA 92717

Margaret Jerome Dr. David Kieras
c/o Dr. Peter Chandler University of Michigan
83. The Drive Technical Communication 41

Hove College of Engineering
Sussex 1223 E. Engineering Building
UNITED KINGDOM Ann Arbor, MI 48109

Dr. Joseph E. Johnson Dr. Peter Kincaid
Assistant Dean for Training Analysis

Graduate Studies & Evaluation Group
College of Science and Mathematics Department of the Navy
University of South Carolina Orlando, FL 32813
Columbia, SC 29208

Dr. David Klahr
Dr. Douglas H. Jones Carnegie-Mellon University
Advanced Statistical Department of Psychology

Technologies Corporation Schenley Frk.
10 Trafalgar Court Pittsburgh, PA 15213
Lawrenceville. NJ 081'48

Dr. Mazie Knerr
Dr. Marcel Just Program Manager
Carnegie-Mellon University Training F--earch Division
Department of Psychology HumRRO
Schenley Park 1100 S. WaE- ington
Pittsburgh, PA 15213 Alexandria, VA 22314

Dr. Milton S. Katz Dr. Janet L. Kolodner
Army Research Institute Georgia Institute of Technology
5001 Eisenhower Avenue School of I-formation
Alexandria, VA 22333 & Computer Science

Atlanta, GA 30332
Dr. Scott Kelso
Haskins Laboratories, Dr. Kennetr Kotovsky
270 Crown Street Department Psychology
New Haven, CT 06510 Community C:'lege of

Alleghen-. County
Dr. Norman J. Kerr 800 Alleghe' i Avenue
Chief of Naval Education Pittsburgh, PA 15233

and Training
Code 0OA2 Dr. Ben4yimi Kuipers
Naval Air Station MIT Laborat:-y for Computer Science
Pensacola, FL 32508 545 Techno>: y Square

Cambridge. "A 02139

Dr. Patrick Kyllonen

AFHRL/MOE
Brooks AFE, TX 78235

........................... *°*."...* "
* ,* .. s...........-**-

W|, 7. 7. .F f-

Dr. Harry F. O'Neil, Jr. Special Assistant for Marine
Training Research Lab Corps Matters,
Army Research Institute ONR Code 100M
5001 Eisenhower Avenue 800 N. Quincy St.
Alexandria, VA 22333 Arlington, VA 22217-5000

Dr. Stellan Ohlsson Psychologist
Learning R & D Center ONR Branch Office
University of Pittsburgh 1030 East Green Street
3939 O'Hara Street Pasadena, CA 91101
Pittsburgh, PA 15213

Dr. Judith Orasanu
Director, Technology Programs, Army Research Institute

Office of Naval Research 5001 Eisenhower Avenue
Code 200 Alexandria, VA 22333
800 North Quincy Street
Arlington, VA 22217-5000 Dr. Jesse Orlansky

Institute for Defense Analyses
Director, Research Programs, 1801 N. Beauregard St.

Office of Naval Research Alexandria, VA 22311
800 North Quincy Street
Arlington, VA 22217-5000 Prof. Seymour Papert

20C-109
Mathematics Group, Massachusetts Institute

Office of Naval Research of Technology
Code 411MA Cambridge, MA 02139
800 North Quincy Street
Arlington, VA 22217-5000 Lt. Col. (Dr.) David Payne

AFHRL
Office of Naval Research, Brooks AFB, TX 78235

Code 433
800 N. Quincy Street Dr. Douglas Pearse
Arlington, VA 22217-5000 DCIEM

Box 2000
Office of Naval Research, Downsview, Ontario

Code 442 CANADA
800 N. Quincy St.
Arlington, VA 22217-5000 Dr. Nancy Pennington

University of Chicago
Office of Naval Research, Graduate School of Business

Code 442EP 1101 E. 58th St.
800 N. Quincy Street Chicago, IL 60637
Arlington, VA 22217-5000

Military Assistant for Training and
Office of Naval Research. Personnel Technology,

Code 442PT OUSD (R & E)
800 N. Quincy Street Room 3D129, The Pentagon
Arlington, VA 22217-5000 Washington, DC 20301
(6 Copies) ..

'. 4._. .".""--". . . •-.. .*".-.--... %...' ... -.. %.%..

Dr. David N. Perkins Dr. Lyn~ne Reder
Educational Technology Center Department of Psychology

337 Gutman Library Carnegie-Mellon University

Appian Way Schenley Park

Cambridge, MA 02138 Pittsburgh, PA 15213
5,. ..

Administrative Sciences Department, Dr. James A. Reggia

Naval Postgraduate School University of Maryland

Monterey, CA 93940 School of Medicine

Department of Neurology

Department of Operations Research, 22 South Greene Street
Naval Postgraduate School Baltimore, MD 21201

Monterey, CA 93940
Dr. Fred Reif

Department of Computer Science, Physics Department

Naval Postgraduate School University of California

Monterey, CA 93940 Berkeley, CA 94720

Dr. Tjeerd Plomp Dr. Lauren Resnick

Twente University of Technology Learning R & D Center

Department of Education University of Pittsburgh

P.O. Box 217 3939 O'Hara Street
7500 AE ENSCHEDE Pittsburgh, PA 15213
THE NETHERLANDS

Dr. Mary S. Riley
Dr. Martha Polson Program in Cognitive Science

Department of Psychology Center for Human Information

Campus Box 346 Processing

University of Colorado University of California
Boulder, CO 80309 La Jolla, CA 92093

Dr. Peter Polson Dr. Andrew M. Rose

University of Colorado American Institutes

Department of Psychology for Research

Boulder, CO 80309 1055 Thomas Jefferson St., NW
Washington. DC 20007

Dr. Steven E. Poltrock

MCC Dr. William B. Rouse
9430 Research Blvd. Georgia Institute of Technology

Echelon Bldg #1 School of Industrial & Systems
Austin, TX 78759-6509 Engineering

Atlanta, GA 30332
Dr. Harry E. Pople

University of Pittsburgh Dr. Donald Rubin

Decision Systems Laboratory Statistics Department '-;

1360 Scaife Hall Science Center, Room 608
Pittsburgh, PA 15261 1 Oxford Street

Harvard University

Dr. Joseph Psotka Cambridge, MA 02138

ATTN: PERI-IC
Army Research Institute Dr. Lawrence Rudner

5001 Eisenhower Ave. 403 Elm Avenue

Alexandria, VA 22333 Takoma Park, MD 20012

.4.:* .'* ...

* .L-.. . ., ~. * , ~~* .. ,.7 ~ ~ ~ ~ r - ~,. ~.~ .. . '."

Dr. Michael J. Samet Dr. Ted Shortliffe

Perceptronics, Inc Computer Science Department

6271 Variel Avenue Stanford University

Woodland Hills, CA 91364 Stanford, CA 94305

Dr. Robert Sasmor Dr. Lee Shulman
Army Research Institute Stanford University
5001 Eisenhower Avenue 1040 Cathcart Way

Alexandria, VA 22333 Stanford, CA 94305

Dr. Roger Schank Dr. Miriam Shustack
Yale University Code 51

Computer Science Department Navy Personnel R & D Center

P.O. Box 2158 San Diego, CA 92152
New Haven, CT 06520

Dr. Robert S. Siegler

Dr. Alan H. Schoenfeld Carnegie-Mellon University
University of California Department of Psychology
Department of Education Schenley Park
Berkeley, CA 94720 Pittsburgh, PA 15213

Dr. Janet Schofield Dr. Herbert A. Simon

Learning R&D Center Department of Psychology
University of Pittsburgh Carnegie-Mellon University
Pittsburgh, PA 15260 Schenley Park

Pittsburgh, PA 15213
Dr. Judith Segal
Room 819F Dr. Zita M Simutis

NIE Instructional Technology
1200 19th Street N.W. Systems Area
Washington, DC 20208 ARI

5001 Eisenhower Avenue
Dr. Ramsay W. Selden Alexandria, VA 22333

NIE
Mail Stop 1241 Dr. H. Wallace Sinaiko
1200 19th St., NW Manpower Research

Washington, DC 20208 and Advisory Services
Smithsonian Institution .--

Dr. Michael G. Shafto 801 North Pitt Street "-
ONR Code 442PT Alexandria, VA 22314

800 N. Quincy Street
Arlington, VA 22217-5000 Dr. Derek Sleeman

Stanford University

Dr. Sylvia A. S. Shafto School of Education
National Institute of Education Stanford, CA 94305
1200 19th Street
Mail Stop 1806 Dr. Edward E. Smith
Washington, DC 20208 Bolt Beranek & Newman, Inc.

50 Moulton Street

Dr. T. B. Sheridan Cambridge, MA 02138
Dept. of Mechanical Engineering

MIT
Cambridge, MA 02139

..*.*~~*** .,. - . -

Dr. Alfred F. Smode Dr. Thomas Sticht

Senior Scientist Navy Personnel R&D Center
Code 7B San Diego, CA 92152
Naval Training Equipment Center
Orlando, FL 32813 Dr. David Stone

KAJ Software, Inc.
Dr. Richard Snow 3420 East Shea Blvd.
Liaison Scientist Suite 161 N',
Office of Naval Research Phoenix, AZ 85028

Branch Office, London
Box 39 Cdr Michael Suman, PD 303
FPO New York, NY 09510 Naval Training Equipment Center

Code N51, Comptroller

Dr. Elliot Soloway Orlando, FL 32813
Yale University
Computer Science Department Dr. Hariharan Swaminathan

P.O. Box 2158 Laboratory of Psychometric and
New Haven, CT 06520 Evaluation Research

School of Education
Dr. Richard Sorensen University of Massachusetts " - "
Navy Personnel R&D Center Amherst, MA 01003

San Diego, CA 92152
Mr. Brad Sympson

James J. Staszewski Navy Personnel R&D Center
Research Associate San Diego, CA 92152
Carnegie-Mellon University
Department of Psychology Dr. John Tangney
Schenley Park AFOSR/NL
Pittsburgh, PA 15213 Bolling AFB, DC 20332

Dr. Marian Stearns Dr. Kikumi Tatsuoka
SRI International CERL

333 Ravenswood Ave. 252 Engineering Research

Room B-S324 Laboratory

Menlo Park, CA 94025 Urbana, IL 61801

Dr. Robert Sternberg Dr. Maurice Tatsuoka

Department of Psychology 220 Education Bldg
Yale University 1310 S. Sixth St.

Box 11A, Yale Station Champaign, 1L 61820
New Haven, CT 06520

Dr. Perry W. Thorndyke
Dr. Albert Stevens FMC Corporation
Bolt Beranek & Newman, Inc. Central Engineering Labs
10 Moulton St. 1185 Coleman Avenue, Box 580
Cambridge, MA 02238 Santa Clara, CA 95052

Dr. Paul J. Sticha Dr. Douglas Towne

Senior Staff Scientist Behavioral Technology Labs
Training Research Division 1845 S. Elena Ave.
HumRRO Redondo Beach, CA 90277
1100 S. Washington

Alexandria, VA 22314

S " "*" " * . . . n ". ."."" " " " " " " "" "

- - 2 ~ ~ -. - -.-- , , .,q-- .

Dr. Amos Tversky Dr Douglas Wetzel . -
Stanford University Code 12
Dept. of Psychology Navy Personnel R&D Center
Stanford, CA 94305 San Diego, CA 92152

Dr. James Tweeddale Dr. Barbara White
Technical Director Bolt Beranek & Newman, Inc.
Navy Personnel R&D Center 10 Moulton Street
San Diego, CA 92152 Cambridge, MA 02238

Dr. Paul Twohig Dr. Hilda Wing
Army Research Institute Army Research Institute
5001 Eisenhower Avenue 5001 Eisenhower Ave.
Alexandria, VA 22333 Alexandria, VA 22333

Dr. J. Uhlaner Dr. Robert A. Wisher
Uhlaner Consultants U.S. Army Institute for the
4258 Bonavita Drive Behavioral and Social Sciences
Encino, CA 91436 5001 Eisenhower Avenue

Alexandria, VA 22333
Headquarters, U. S. Marine Corps
Code MPI-20 Dr. Martin F. Wiskoff
Washington, DC 20380 Navy Personnel R & D Center

San Diego, CA 92152
Dr. Kurt Van Lehn
Xerox PARC Dr. Frank Withrow
3333 Coyote Hill Road U. S. Office of Education
Palo Alto, CA 94304 400 Maryland Ave. SW

Washington, DC 20202
Dr. Beth Warren
Bolt Beranek & Newman, Inc. Dr. Merlin C. Wittrock
50 Moulton Street Graduate School of Education
Cambridge, MA 02138 UCLA -.. ,

Los Angeles, CA 90024
Dr. Edward Wegman
Office of Naval Research Mr. John H. Wolfe
Code 411 Navy Personnel R&D Center
800 North Quincy Street San Diego, CA 92152
Arlington, VA 22217-5000

Dr. Wallace Wulfeck, III
Dr. David J. Weiss Navy Personnel R&D Center
N660 Elliott Hall San Diego, :A 92152
University of Minnesota
75 E. River Road Dr. Joe Yasatuke
Minneapolis, MN 55455 AFHRL/LRT

Lowry AFB, CO 80230

Dr. Keith T. Wescourt L w A B-8_

FMC Corporation Mr. Carl York
Central Engineering Labs System Development Foundation
1185 Coleman Ave., Box 580 181 Lytton Avenue
Santa Clara, CA 95052 Suite 210

Palo Alto, CA 94301

S 5 * S .*
* 'o .

Dr. Joseph L. Young
Memory & Cognitive.

Proce33es
National Science Foundation .

Washington. DC 20550

Dr. Steven Zornetzer
Office of Naval Research
Code 440
800 N. Quincy St.
Arlington, VA 22217-5000

Dr. Michael J. Zyda
Naval Postgraduate School
Code 52CK
Monterey, CA 93943

-777 . 7 . 7

